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ABSTRACT

The Marcum Q-Function is an important tool in the study of radar detec-
tion probabilities in Gaussian clutter and noise. Due to the fact that it is
an intractable integral, much research has focused on finding good numeri-
cal approximations for it. Such approximations include numerical integration
techniques, such as adaptive Simpson quadrature, and Taylor series approxi-
mations, induced by the modified Bessel function of order zero, which appears
in the integrand. One technique which has not been explored in the literature
is the sampling-based Monte Carlo approach. Part of the reason for this is that
the integral representation of the Marcum Q-Function is not in the most suit-
able form for Monte Carlo methods. Using some recently derived techniques,
we construct a number of sampling-based estimators of this function, and we
consider their relative merits.

APPROVED FOR PUBLIC RELEASE



DSTO–RR–0311

Published by

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia, Australia 5111

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

c© Commonwealth of Australia 2006
AR No. AR-013-613
April, 2006

APPROVED FOR PUBLIC RELEASE

ii



DSTO–RR–0311

Numerical Estimation of Marcum’s Q-Function using Monte
Carlo Approximation Schemes

EXECUTIVE SUMMARY

Radar detector performance and analysis are issues of paramount importance to the modus
operandi of Electronic Warfare and Radar Division’s Radar Modelling and Analysis Group.
The research presented here is the practical extension of that which has appeared in a
recent research report by the first author [DSTO-RR-0304, ‘Stochastic Representations of
the Marcum Q-Function and Associated Radar Detection Probabilities’]. Hence it is in
support of the ongoing long range research efforts for AIR 04/206. The purpose of this task
is to provide the Royal Australian Air Force with technical advice on the performance of the
Elta EL/M-2022 maritime radar, which is used in the AP-3C Orion fleet. Key performance
measures of a radar include probabilities of false alarm and detection. The work presented
here is concerned with the efficient estimation of a specific radar detection probability,
known as Marcum’s Q-function. This corresponds to the detection probability of a target
in Gaussian clutter and noise, and so is a fundamental model in radar detection theory.
This probability has been of interest to DSTO’s research interests since the 1970s, through
Task DST 74/130, which required the efficient estimation of the Marcum Q-Function.

In contrast to the techniques currently used in the radar literature, we investigate the
application of Monte Carlo sampling methods to estimate this detection probability. Such
methods have been investigated by the first author, in a number of DSTO reports, also
in support of AIR 04/206 and its precursor AIR 01/217. The Marcum Q-Function does
not prima facie suggest that Monte Carlo techniques would be suitable. New discoveries,
through stochastic representations of the Marcum Q-function, have indicated that Monte
Carlo techniques may be useful tools in the estimation of detection probabilities. We thus
investigate whether these stochastic representations admit useful and efficient Monte Carlo
estimators of the Marcum Q-Function.
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Glossary

Fundamental Symbols

IN Natural numbers {0, 1, 2, . . .}.

IR Real numbers.

IR+ Positive real numbers.

IP Probability.

IE Statistical expectation.

VV Statistical variance.

II Indicator function: II[x ∈ A] =

{
1 if x ∈ A;
0 otherwise.

:= Defined to be.

≈ Approximately equal to.

d= Equality in distribution: X d= Y is equivalent to IP(X ∈ A) = IP(Y ∈ A) for all sets A.

σ Signal to noise ratio (SNR).

τ Detection threshold.

Ξ̂ An estimator.

a ∧ b Minimum of a and b.

a ∨ b Maximum of a and b.

bxc Greatest integer not exceeding x.

Distributions

Po(λ) Poisson Distribution with mean λ > 0: if X d= Po(λ), then IP(X = j) =
e−λλj

j!
,

for all j ∈ IN.

Po(λ){A} Cumulative Poisson probability on set A ⊂ IN: Po(λ){A} =
∑

j∈A

e−λλj

j!
.

R(α, β) Uniform (or Rectangular) Distribution on the interval [α, β] (α < β): If X d=

R(α, β), then IP(X ≤ x) =
x− α

β − α
, for x ∈ [α, β].
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Exp(λ) Exponential Distribution with mean λ−1: If X d= Exp(λ), then IP(X ≤ x) =
1 − e−λx.

TruncExp(α, β, λ) Truncated Exponential Distribution on the interval [α, β] (α < β),

with mean
1
λ

+
αe−λα − βe−λβ

e−λα − e−λβ
: IfX d= TruncExp(α, β, λ), then IP(X ≤ x) =

e−λα − e−λx

e−λα − e−λβ
.

Functions

In(x) Modified Bessel function of order n: In(x) =
1
2π

∫ π

−π
(−ie−iθ)ne−x sin θdθ.

Q(α, β) First Order Marcum Q-Function: Q(α, β) =
∫ ∞

β
xe

−
(

x2+α2

2

)
I0(αx)dx.

ρ(σ, τ) Marcum Q-Function (Detection probability form): ρ(σ, τ) = e−σ
∫ ∞

τ
e−νI0(2

√
σν)dν.

These are related via ρ(σ, τ) = Q(
√

2σ,
√

2τ).

Erfc(z) Complementary error function: Erfc(z) =
2√
π

∫ ∞

z
e−t2dt.

Estimators

Ξ̂1 =
1
H

H∑

j=1

IP(X ≤ Yj): Discrete Estimator based on Poisson sampling distribution.

Ξ̂2 =
1
M

M∑

j=1

Zj∑

k=0

gX(k)W (Zj): Discrete Importance Sampling Estimator, with tilted sam-

pling distribution.

Ξ̂3 = e−(σ+τ) 1
N

N∑

j=1

I0(2
√
Tjσ): Continuous Estimator, based upon original Marcum Q-

Function, using a Truncated Exponential sampling distribution Tj
d= TruncExp(τ,∞, 1).

Ξ̂4 =
1
2
[1 − e−2σI0(2σ)] + e−σÎ: Continuous Estimator, based upon Theorem 1, Part (iii),

using a uniform sampling distribution Tj
d= R(τ ∧ σ, τ ∨ σ), where

Î := ((τ ∨ σ) − (τ ∧ σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

e−TjI0(2
√
Tjσ).

Ξ̂5 =
1
2
[1 − e−2τI0(2τ)] + e−σ−τ I0(2

√
στ) + e−τ Ĵ : Continuous Estimator, based upon The-

orem 1, Part (iv), using Tj
d= R(τ ∧ σ, τ ∨ σ) sampling distribution, where

Ĵ := ((τ ∨ σ) − (τ ∧ σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

e−TjI0(2
√
Tjτ).
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Ξ̂6 =
1
2
[1 − e−2σI0(2σ)] + e−σK̂: Continuous Estimator, based upon Theorem 1, Part (iii),

using sampling distribution Tj
d= TruncExp(τ ∧ σ, τ ∨ σ, 1), where

K̂ := (e−(τ∧σ) − e−(τ∨σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

I0(2
√
Tjσ).

Ξ̂7 =
1
2
[1 − e−2τI0(2τ)] + e−σ−τ I0(2

√
στ) + e−τ L̂: Continuous Estimator, based upon The-

orem 1, Part (iv), using sampling distribution Tj
d= TruncExp(τ ∧σ, τ ∨σ, 1), where

L̂ := (e−(τ∧σ) − e−(τ∨σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

I0(2
√
Tjτ).
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1 The Marcum Q-Function

The Marcum Q-Function [Marcum 1950, Marcum 1960, Marcum and Swerling 1960] has
had a long association with the study of target detection by pulsed radars. In radar signal
processing, the Generalised Marcum Q-Function is the detection probability of a number
of incoherently integrated received signals, in a Gaussian clutter and noise environment
[Helstrom 1968, Nuttall 1975 and Shnidman 1989]. It is also an important function in
the study of digital communications. In the latter, it occurs in performance analysis
related to partially coherent, differentiably coherent and noncoherent communications
[Simon 1998 and Simon and Alouini 2003]. The Marcum Q-Function is a definite integral
defined on a semi-infinite domain, whose integrand involves a modified Bessel function,
and consequently no closed analytic result is available. Consequently, much research has
been devoted to finding good approximations for it. Techniques employed to this end
include numerical integration schemes and approximations based on the modified Bessel
function in the integrand. Recently, some new expressions for the Marcum Q-Function
have been derived, linking it to probabilities associated with independent Poisson random
variables [Weinberg 2005]. These new representations are in a form that is readily adapted
to Monte Carlo integration. Thus the purpose of this work is to investigate the application
of the stochastic representations in [Weinberg 2005] to the Monte Carlo estimation of the
Marcum Q-Function. In particular, we will be restricting attention to what is known as
the standard Marcum Q-Function. The generalised Marcum Q-Function is considered in
detail in [Weinberg 2005].

1.1 The Standard Marcum Q-Function

The first order, or standard, Marcum Q-Function is defined by the integral

Q(α, β) :=
∫ ∞

β
xe

−
(

x2+α2

2

)
I0(αx)dx, (1)

where I0(·) is the modified Bessel function, of the first kind, of order zero [Bowman 1958
and Tsypkin and Tsypkin 1988]. The integrand in (1) is the probability density function
of a Rician distribution [Levanon 1988]. As pointed out in [Sarkies 1976], the latter is the
distribution for the output of a linear law envelope detector with input signal of amplitude
α and narrow band additive Gaussian noise with variance 1.

An equivalent form, which is slightly more natural for radar detection theory, can be
obtained by letting α =

√
2σ and β =

√
2τ . Under this transformation, we define the

alternative form of (1):

ρ(σ, τ) := e−σ
∫ ∞

τ
e−νI0(2

√
σν)dν. (2)

In this form, σ is the constant received signal to noise ratio and τ is the normalised
detection threshold [see Levanon 1988]. Throughout we will refer to (2) as the Marcum
Q-Function, and restrict attention to this form, noting that results can easily be extended
to (1) by using the fact that Q(α, β) = ρ(α2

2 ,
β2

2 ).

1
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1.2 Estimating the Marcum Q-Function

In view of the integrals (1) and (2), it is necessary to find good approximations for the
Marcum Q-Function. There have been a number of schemes investigated over the years.
These include applying numerical integration directly to (1) and (2). Two examples of
such techniques are the application of Gauss-Laguerre integration in [Sarkies 1976], and
saddlepoint integration in [Helstrom 1992]. These schemes generated good numerical ap-
proximations. Another class of techniques are those which utilise truncated Taylor series
approximations applied to the Bessel function in (1) and (2). Such schemes are often
referred to as recursive methods, and an excellent survey of such techniques can be found
in [Shnidman 1989]. A major problem with recursive schemes applied to the estimation of
the Marcum Q-Function is that they are prone to computational complexities. As pointed
out in [Helstrom 1992], even for small parameter values in the Marcum Q-Function, a
computer has to deal with underflow and overflow. In the case of large parameters, there
will be a very large number of summations required, resulting in major round-off errors.
From a practical point of view, there are merits and tradeoffs with both such schemes.

A class of numerical methods that has not been applied to the estimation of the Marcum
Q-Function is Monte Carlo Methods [Ross 2002 and Srinivasan 2000]. This is likely to
have been due to the fact that the expressions (1) and (2) do not appear to be in a
useful form for such methods. On inspection of (2), for example, the only obvious choice
of a Monte Carlo estimator is to use a Truncated Exponential sampling distribution.
The only immediate alternative is to use Importance Sampling and sample from another
distribution, and modify the integral using a weight function [Srinivasan 2000]. However,
there is no obvious choice for such an Importance Sampling distribution.

In [Weinberg 2005] a number of new results were derived, linking (2) to a probability
comparing a pair of independent Poisson random variables. This results in a very simple
discrete Monte Carlo estimator of (2). Additionally, a stochastic representation of (2) is
also derived in [Weinberg 2005], which leads to a number of possible continuous sampling
distributions for Monte Carlo estimators.

1.3 Monte Carlo Methods

Monte Carlo Methods [Billingsley 1995, Robert and Casella 2004, Ross 2002, Srinivasan
2002] use statistical sampling techniques to estimate expectations of random variables.
Consequently, this scheme can be used to approximate probabilities and integrals [Wein-
berg 2004 and Weinberg and Kyprianou 2005].

The Strong Law of Large Numbers (SLLN) [Billingsley 1995, Robert and Casella 2004,
Ross 2002 and Srinivasan 2002] is the basis of the Monte Carlo approach to the estima-
tion of statistical expectations. Suppose that K ∈ IN − {0} and that we have a sequence
Z,Z1, Z2, . . . , ZK , . . ., consisting of independent and identically distributed random vari-

2
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ables with mean IE[Z]. Then the simplest form of the SLLN states that

lim
K→∞

K∑

j=1

Zj

K
= IE[Z], (3)

except on a set of probability zero. Hence, the mean of a finite number of the random
variables gives an approximation to the expectation IE[Z]. As K increases without bound,
the approximation becomes more accurate. Thus, in order to estimate the mean IE[Z],
we generate a series of independent realisations of Z, and average them. The generation
of realisations of random variables, both continuous and discrete, is described in detail in
[Ross 2002].

We can apply (3) to a function of the sequence of original random variables. Specifically,
if h is an integrable function, whose domain is the sample space of these random variables,
then (3) implies that

lim
K→∞

K∑

j=1

h(Zj)

K
= IE[h(Z)]. (4)

Consequently the sum
K∑

j=1

h(Zj)
K

in (4) can be used to approximate the expectation

IE[h(Z)]. The approximations induced by (3) and (4) utilise statistical sampling to es-
timate an expectation, and thus have been referred to as Monte Carlo Methods [Robert
and Casella 2004, Ross 2002 and Srinivasan 2002]. Although the SLLN guarantees the
convergence of the sample mean in (3), there are a number of issues with estimators based
upon this principle. The main difficulty is that the sample size K in (3) may have to
be extremely large in order to achieve a prescribed variance. Sometimes it is possible to
reduce the required sample size K by sampling from a different distribution, and modify-
ing the underlying estimator to make it unbiased. Such techniques, often referred to as
variance reduction techniques, are known as Importance Sampling [Srinivasan 2002].

1.4 Contributions of this Report

This report introduces the idea of applying Monte Carlo simulation schemes to the eval-
uation of (2). In particular, we introduce two Monte Carlo estimators of the Marcum
Q-Function based upon discrete sampling distributions. One of these is based upon a Pois-
son association derived in [Weinberg 2005], while the second is an Importance Sampling
estimator. Additionally, we investigate five Monte Carlo estimators, which use continuous
sampling distributions. The first of these is based on direct sampling applied to (2), and
uses a Truncated Exponential distribution referred to previously. The remaining four are
based upon stochastic representations of the Marcum Q-Function. Two are the result of

3
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the expressions in [Weinberg 2005], while the second pair arise from a new stochastic form
of (2), derived in this report.

The seven Monte Carlo estimators are compared to results derived from adaptive Simpson
quadrature [Lyness and Kaganove 1976]. We also compare some of the estimators to
results based upon partial sum series approximations of Taylor series representations of
the Marcum Q-Function [Shnidman 1989]. We also examine the simulation gain of pairs
of estimators, in an attempt to identify an optimal Monte Carlo estimator of (2).

4
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2 Representations of the Marcum Q-Function

The key to Monte Carlo estimation of the Marcum Q-Function is to express it in a form that
suggests a suitable sampling distribution. To this end, we present a number of results,
derived in [Weinberg 2005], which readily suggest suitable sampling distributions. In
addition, a new representation of the Marcum Q-Function is derived, which also suggests
a number of possible Monte Carlo estimators. These expressions will be referred to as
probabilistic-based representations of the Marcum Q-Function.

2.1 A General Result: Theorem 1

In [Weinberg 2005] a number of probabilistic or stochastic representations of the Marcum
Q-Function are derived. These express (2) in terms of functions of probabilities of random
variables. The following Theorem states these results, together with an entirely new result:

Theorem 1 Suppose P = {X (ν), ν ∈ IR+} is a series of independent Poisson random
variables with mean ν. Then the following are equivalent:

(i) ρ(σ, τ) is the Marcum Q-Function (2);

(ii) ρ(σ, τ) = IP[X(τ) ≤ X(σ)];

(iii) ρ(σ, τ) = 1
2 [1 − e−2σI0(2σ)] + e−σ

∫ σ

τ
e−νI0(2

√
νσ)dν;

(iv) ρ(σ, τ) = 1
2 [1 − e−2τI0(2τ)] + e−σ−τ I0(2

√
στ) + e−τ

∫ σ

τ
e−νI0(2

√
ντ)dν.

The proof that (ii) and (iii) are eqivalent to the Marcum Q-Function can be found in
[Weinberg 2005]. Expression (ii) shows that (2) is the same as a comparison of two
Poisson random variables, one with mean being the signal to noise ratio σ, while the
second has as mean the threshold τ . This gives a very intuitive interpretation to the
Marcum Q-Function, which can be found in [Weinberg 2005]. Result (iv) is an entirely
new representation of (2), and was derived using the symmetry relationship of the Marcum
Q-Function [see Schwartz, Bennett and Stein 1996].

To prove Theorem 1, we need only derive (iv). We require the two following technical
Lemmas:

Lemma 1 For the Marcum Q-Function ρ(·, ·),

ρ(σ, σ) =
1
2
[1 − e−2σI0(2σ)]. (5)

5
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The proof of Lemma 1 can be found in Appendix A of [Weinberg 2005]. Note ρ(σ, σ) is
the detection probability corresponding to the case when the threshold and signal to noise
ratio are equal.

The next Lemma is the well-known symmetry relation of the Marcum Q-Function:

Lemma 2 The Marcum Q-Function ρ(·, ·) has the property that

ρ(σ, τ) + ρ(τ, σ) = 1 + e−σ−τ I0(2
√
στ). (6)

Proof : Although this is a well-known result, and can be found in [Schwartz, Bennett and
Stein 1996], we present a new probabilistic proof. Assume that X1,X2,X3,X4 ∈ P such
that X1

d= X4 and X2
d= X3. Then Theorem 1 Part (ii) implies

ρ(τ, σ) = IP[X1(σ) ≤ X2(τ)] (7)

and
ρ(σ, τ) = IP[X3(τ) ≤ X4(σ)]. (8)

Hence it follows that

ρ(σ, τ) + ρ(τ, σ) = IP[X3(τ) = X4(σ)] + IP[X3(τ) < X4(σ)]

+IP[X1(σ) = X2(τ)] + IP[X1(σ) < X2(τ)]. (9)

By construction it follows that

IP[X1(σ) = X2(τ)] = IP[X3(τ) = X4(σ)]. (10)

Thus, by applying (10) to (9), we deduce

ρ(σ, τ) + ρ(τ, σ) = 2IP[X(σ) = X(τ)] + IP[X(τ) < X(σ)]

+ IP[X(σ) < X(τ)]

= 2IP[X(σ) = X(τ)] + IP[X(τ) 6= X(σ)]

= 1 + IP[X(σ) = X(τ)]. (11)

The difference of two independent Poisson distributions is known as a Skellam distribution
[Skellam 1946], and it can be shown that the zero probability of such a distribution implies
that

IP[X(σ) = X(τ)] =
∞∑

k=0

e−σ−τ (στ)k

k!2
. (12)

6
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Also, the modified Bessel function of order zero has Taylor series expansion

I0(z) =
∞∑

k=0

( z2

4 )k

k!2
(13)

[Bowman 1958].

Hence, with the choice of z = 2
√
στ , we have

IP[X(σ) = X(τ)] = e−σ−τ I0(2
√
στ ). (14)

Consequently, by an application of (14) to (11), we deduce that

ρ(σ, τ) + ρ(τ, σ) = 1 + e−σ−τ I0(2
√
στ), (15)

which completes the proof of the Lemma.

2

We are now in a position to prove Part (iv) of Theorem 1.

Proof of Theorem 1, Part (iv):

By interchanging σ and τ in Part (iii) in Theorem 1, we note that

ρ(τ, σ) = ρ(τ, τ) +
∫ τ

σ
IP[X(ν) = X(τ)]dν. (16)

An application of (16) to the symmetry relation in Lemma 2, and applying Lemma 1, we
deduce that

ρ(σ, τ) = 1 + e−σ−τ I0(2
√
στ) − ρ(τ, τ) −

∫ τ

σ
IP[X(ν) = X(τ)]dν

= 1 + e−σ−τ I0(2
√
στ) − 1

2
[1 + e−2τI0(2τ)]

+
∫ σ

τ
IP[X(ν) = X(τ)]dν

=
1
2

+ e−σ−τ I0(2
√
στ) − 1

2
[1 + e−2τ I0(2τ)]

+
∫ σ

τ
IP[X(ν) = X(τ)]dν

=
1
2
[1 − e−2τ I0(2τ)] + e−σ−τ I0(2

√
στ) +

∫ σ

τ
IP[X(ν) = X(τ)]dν. (17)

7
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The proof is completed by recalling that IP[X(ν) = X(τ)] = e−ν−τI0(2
√
ντ), and applying

this to (17).

2

In the next Section we derive a number of estimators, based upon the results of Theorem
1.

8
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3 Monte Carlo Estimators of the Marcum

Q-Function

We are now in a position to introduce a series of Monte Carlo sampling estimators of the
Marcum Q-Function (2). Estimators based upon sampling from both discrete and contin-
uous distributions will be considered. At this stage we limit our attention to introducing
these estimators. For reference, Appendix A contains some details on the calculation
of variances of random variables. Additionally, Appendix B outlines how realisations of
random variables, from a prescribed distribution, can be obtained.

3.1 Discrete Estimators

To begin, we consider a number of estimators of the Marcum Q-Function using discrete
sampling distributions. Firstly, we illustrate how the Monte Carlo scheme works in this
case. With reference to (4), we suppose Z is a discrete random variable with support
IN = {0, 1, 2, . . .}, and h is a function with the same support. We want to estimate the
expectation IE[h(Z)]. A basic Monte Carlo estimator of this expectation can be based on

IE[h(Z)] =
∞∑

k=0

h(k)IP[Z = k] ≈ 1
K

K∑

j=1

h(Zj), (18)

where the sequence Z1, Z2, . . . , ZK consists of independent and identically distributed
copies of the random variable Z. Throughout we will employ the statistical convention of
denoting an estimator by using a hat over its symbol. Hence, we write ℵ̂ to represent the
estimator in (18), so that

ℵ̂ =
1
K

K∑

j=1

h(Zj). (19)

3.1.1 A Standard Monte Carlo Estimator

The first Monte Carlo estimator we consider is based directly on Theorem 1, Part (ii). This
result shows that the Marcum Q-Function (2) can be represented as a probability of the
form IP(X ≤ Y ), whereX and Y are independent (Poisson) random variables with support
IN. With reference to (18), we choose a two-dimensional version of h: h(x, y) = II[x ≤ y],
where II is the indicator function. This means that h(x, y) = 1 if x ≤ y and is zero
otherwise. We also let ψ(X,Y ) = IEh(X,Y ) ≡ IP[X ≤ Y ], which is the probability under
investigation.

Then the standard Monte Carlo estimator of ψ(X,Y ) is

Ξ̂ =
1
K

K∑

j=1

h(Xj , Yj)

9
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=
1
K

K∑

j=1

Yj∑

k=0

II[Xj = k], (20)

where the pairs (Xj , Yj) consist of independent and identically distributed copies of (X,Y ).
The generation of realisations of Poisson random variables is described in [Ross 2002], and
also in Appendix B, to which the reader is referred.

It is not difficult to show that (20) is an unbiased estimator of ψ(X,Y ), meaning that
IE[Ξ̂] = ψ(X,Y ), so that the estimator is centred on the probability it is estimating. Its
variance can be shown to be

VV[Ξ̂] =
1
K

[
ψ(X,Y ) − ψ(X,Y )2

]
. (21)

The expression in (21) shows that as the sample size increases without bound, the esti-
mator’s variation from its expected value decreases to zero. The issue of interest is how
large must N be so that this variance is within a prescribed tolerance. Suppose we require
VV(P̂ ) ≤ ε, for some ε > 0. Using (21), it is not difficult to see that we need to choose

K =

⌊
ψ(X,Y ) − ψ(X,Y )2

ε

⌋
+ 1, (22)

where bxc is the greatest integer not exceeding x. Thus, K is of order 1
ε , unless the

probability ψ(X,Y ) is very small relative to ε. Equation (22) shows the inherent problems
one faces with Monte Carlo estimation. The SLLN guarantees that the estimator will
converge, but the tradeoff is that this might be at the expense of a very large number
of simulation runs. There is an exception to this. In view of the variance (21), if the
probability ψ(X,Y ) is very small, then the variance will also be very small, independently
of the number of simulation runs K. The probability ψ(X,Y ) will be very small when
the random variable X is significantly larger than Y . This case implies Monte Carlo
methods will have the best performance for the estimation of probabilities of rare events.
Nevertheless, we will show that an alternative to (20) can be produced, which is a globally
more efficient estimator.

3.1.2 A Poisson-Based Sampling Estimator: Ξ̂1

The following approach is motivated by the work of [Srinivasan 2000] on the so-called
G-function estimator, and also by the analysis of [Bucklew 2003] on bias point selection.

Note that, since we are assuming X and Y are independent, we can write

IP[X ≤ Y ] =
∞∑

k=0

IP[X ≤ k]IP[Y = k], (23)

and so, in view of (18), a Monte Carlo estimator of (23) is

Ξ̂1 =
1
H

H∑

j=1

IP[X ≤ Yj]

10
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=
1
H

H∑

j=1

Yj∑

k=0

gX(k), (24)

where each Yj is an independent realisation of Y , and we define gX(k) = IP[X = k]. Hence,
we can estimate probabilities of the form IP[X ≤ Y ] by generating independent realisations
of Y and averaging the cumulative distribution function over these values. Expression (23)
provides a means of compression of the probability of interest, analogous to that used in
[Srinivasan 2000]. Sampling from a Poisson distribution, as remarked previously, can be
easily achieved through any of the algorithms given in [Ross 2002] and Appendix B.

We now examine the estimator (24) more closely. Firstly, it is not difficult to show that
it is also an unbiased estimator of ψ(X,Y ). To see this, observe that

IE[Ξ̂1] =
∞∑

m=0

IP[Y = m]
m∑

k=0

gX(k)

=
∞∑

m=0

IP[Y = m]IP[X ≤ m]

= IP[X ≤ Y ].

Secondly, it is not difficult to show its variance is given by

VV[Ξ̂1] =
1
H


IE

[
Y∑

k=0

gX(k)

]2

− ψ(X,Y )2

 . (25)

Observe that the sum in the first expectation in (25) is a (random) sum of probabilities of
the same random variable X, and so is bounded by one. This implies that (25) is smaller
than (21), for the same number of simulations (K = H), and consequently estimator (24)
is more efficient than (20). Hence we will not consider the standard Monte Carlo estimator
(20) any further.

The simulation gain, of a pair of estimators, is a quantitative measure of the improvement
one Monte Carlo estimator has over another, in terms of reducing the number of simula-
tions. For the same level of variance, we are interested in the size of the ratio of K and
H. By equating the expressions (21) and (25), we obtain

Γ =
K

H
=

ψ(X,Y ) − ψ(X,Y )2

IE

[
Y∑

k=0

gX(k)

]2

− ψ(X,Y )2
, (26)

and the previous remarks imply that Γ > 1. Consequently, for the same level of variance,
the estimator (24) requires less simulation runs than (20). To determine the exact level
of improvement is a somewhat complicated exercise. This is due to the fact that both
the variances (21) and (25) depend on the unknown probability ψ(X,Y ), as does the
gain (26). Secondly, the variance (25), and so (26), both depend on the expectation

11
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IE
[∑Y

k=0 gX(k)
]2

, which is not readily evaluated. Both these difficulties can be partially
resolved using estimation. This will at least give a partial understanding of the potential
improvement provided by the estimator (24).

3.1.3 An Importance Sampling Estimator: Ξ̂2

It is now worth considering whether an Importance Sampling estimator can provide an
improvement on the estimator (24). Importance Sampling (IS) [Robert and Casella 2004,
Ross 2002 and Srinivasan 2002] has been developed in an attempt to address the sample size
issues associated with Monte Carlo methods. This is a variance reduction technique, which
attempts to reduce the Monte Carlo estimator’s variance by sampling from a distribution
not directly suggested by the probability being estimated. In the current context, one
would introduce biasing distributions, which would be used in (20) instead of Xj and Yj .
In order to make the resulting estimator unbiased, it is weighted at each point by a weight
function. As pointed out in [Srinivasan 2002], these biasing distributions are chosen in an
attempt to increase the distribution of points relevant to the estimation, or in other words,
sample points that are important to the Monte Carlo simulation. A consequence of the
successful achievement of this is that the resulting estimator’s variance should be reduced.
This will also result in a reduction in simulation runs, when compared to a standard Monte
Carlo estimator.

Much work has been devoted to the design of efficient IS biasing distributions [Srinivasan
2002]. However, it is important to remember that Monte Carlo IS techniques tend to
work best when estimating probabilities associated with rare events, such as false alarm
probabilities in CFAR processes [see Ross 2002 and Srinivasan 2002]. In the current
context, we are interested in the Marcum Q-Function (2), which take values in a full
spectrum of possibilities. Hence it is possible that Importance Sampling will not improve
significantly the performance of Monte Carlo estimators of the Marcum Q-Function.

We attempt the construction of an Importance Sampling estimator based on (24). The
key to this is to replace the random variables Yj, j ∈ {1, 2, . . . ,H} with a new biasing
distribution Zj, for j in the same indexing set, and weighting the estimator (24) at each
point, to make the resulting estimator unbiased. Such an estimator can be defined as

Ξ̂2 =
1
M

M∑

j=1

Zj∑

k=0

gX(k)W (Zj), (27)

where the random variables Zj are independent and identically distributed copies of the
biasing random variable Z. The function W (·) in (27) is a weight function, which is chosen
to make the estimator unbiased for ψ(X,Y ). It can be shown that the latter necessitates
the choice of

W (k) =
IP[Y = k]
IP[Z = k]

, (28)

which also shows that we must ensure that any choice made for the biasing distribution
does not have zero probabilities on its support. This automatically excludes the choice of
a truncated Poisson distribution, which would have been a somewhat natural choice. The

12
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latter is the case because a Poisson distribution is centered on its mean, and its variance
is also equal to its mean. Thus a truncated Poisson could be constructed that gives more
likelihood near its mean value.

The variance of (27) can be shown to be

VV[Ξ̂2] =
1
M


IE

[
Z∑

k=0

gX(k)W (Z)

]2

− ψ(X,Y )2



(29)

=
1
M


IE



(

Y∑

k=0

gX(k)

)2

W (Y )


− ψ(X,Y )2


 ,

where the latter equality follows by applying the definition of the weight function (28),
and expanding out the expectation. Comparing (29) to (25), we see that if a biasing dis-
tribution can be chosen so that the weight function never exceeds unity, the corresponding
Importance Sampling estimator will be more efficient. In the context of interest, since the
biasing distribution will have the same support as Y , namely the nonnegative integers, this
property will not hold [see Srinivasan, 2002]. There are a number of Importance Sampling
biasing distributions that have been studied in the literature. These have been developed
by using properties of the unique optimal biasing distribution associated with Importance
Sampling techniques [Srinivasan, 2002]. To illustrate this in our current situation, consider
the choice of biasing distribution with point probabilities

IP[Z = m] = ψ(X,Y )−1IP[Y = m]
m∑

k=0

gX(k). (30)

Applying (30) to the variance (29), we see that the corresponding estimator (27) has zero
variance. The distribution (30) cannot be used in practice, because it depends on the
unknown probability of interest, namely ψ(X,Y ). However, as pointed out in [Srinivasan
2002], its form suggests how potential biasing distributions can be constructed. Specifi-
cally, it suggests a biasing distribution should be proportional to the original distribution,
and concentrated on the event or region of interest. Based on such observations, potential
biasing distributions include scaling and translation applied to the original distribution
[Srinivasan 2002], exponential twisting or tilting [Ross 2002 and Srinivasan 2002] and
Chernoff Importance Sampling distributions [Gerlach 1999].

We consider the case of a discrete tilted biasing distribution [Ross 2002]. Such a distribu-
tion has point probabilities given by

IP[Z = k] = IP[Z = k|θ] =
θkIP[Y = k]

∞∑

m=0

θmIP[Y = m]
, (31)

for all k ∈ IN, where θ > 0 is a biasing parameter. Observe that the normalising constant
on the denominator of (31) is the probability generating function of Y [see Billingsley 1995
and Durrett 1996]. We assume that Y is Poisson with parameter λ. Consequently, it can

13
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be shown that
∑∞

m=0 θ
mIP[Y = m] = e−λ(1−θ), and hence (31) becomes

IP[Z = k] =
e−λθ(λθ)k

k!
, (32)

which implies that the biasing distribution is also Poisson, but with a parameter of λθ.
Additionally, it follows that the weight function (28) is W (k) = θ−ke−λ(1−θ). This weight
function implies the variance (29) becomes

VV[Ξ̂2] =
1
M


e−λ(1−θ)IE


θ−Y

(
Y∑

k=0

gX(k)

)2

− ψ(X,Y )2


 . (33)

An issue with the variance (33) is that if θ < 1, the term θ−Y in the expectation component
of (33) will have the potential to grow exponentially. This is due to the fact that Y takes
values in the nonnegative integers. Also, with the choice of θ > 1, the term e−λ(1−θ) will
also grow exponentially, but not in such a dynamic way. In this case, the term θ−Y will
cause the expectation in (33) to decrease exponentially, and has the potential to control
the behaviour of the multiplier term. Hence we restrict attention to the case where θ ≥ 1.
Our interest is whether a θ > 1 can be found, such that the variance (33) is smaller than
(25), when H = M . As before, we let the simulation gain be Γ = H

M . Then for the same
variance in (25) and (33),

Γ =

IE

[
Y∑

k=0

gX(k)

]2

− ψ(X,Y )2


e−λ(1−θ)IE


θ−Y

(
Y∑

k=0

gX(k)

)2

− ψ(X,Y )2



. (34)

In contrast to the gain (26), it is not mathematically straightforward to determine whether
the gain (34) exceeds 1, for particular choices of θ. For specific choices of the free para-
meters one can investigate this gain numerically. Also, it is possible to attempt to choose
a θ that minimises the variance (33), by employing a stochastic Newton recursion, as in
[Srinivasan 2000]. The disadvantage of the latter is that it necessitates the introduction
of two additional Monte Carlo estimators, as well as a recursion scheme, which can add
considerably to the numerical computation times. We will examine these gains further in
Section 4.

3.2 Continuous Estimators

Estimators based upon continuous sampling distributions are now considered. On inspec-
tion of the Marcum Q-Function integral (2), continuous sampling distributions are the
most obvious approach. In such cases, we are again interested in estimating the expecta-
tion IE[h(Z)], but we assume that Z has a density g on a subset of the real line, Ω ⊂ IR.
Then, in view of (4), this implies

IE[h(Z)] =
∫

Ω
h(z)g(z)dz ≈ 1

K

K∑

j=1

h(Zj), (35)

14
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where each Zj is generated from a random variable with density g. The Marcum Q-
Function integral (2) has an exponential term in its integrand, which can be weighted to
produce a density that can then be used to construct a sampling distribution. We will
consider this estimator, as well as a number of others that can be derived from Theorem
1.

3.2.1 Estimator Based on Original Marcum Q-Function Integral: Ξ̂3

As remarked previously, an obvious choice for biasing distribution of (2) is a Truncated
Exponential distribution, with this distribution the restriction of the standard exponential
distribution to the interval [τ,∞). We denote this distribution by TruncExp(τ,∞, 1), and
its corresponding density is fT (ν) = eτ−ν , for ν ≥ τ . By scaling the Marcum Q-Function
integral (2) by e−τ , we arrive at the estimator

Ξ̂3 = e−(σ+τ) 1
N

N∑

j=1

I0(2
√
Tjσ), (36)

where each Tj is generated by independently sampling from the TruncExp(τ,∞, 1) dis-
tribution. Sampling from the latter is relatively straightforward, since it only requires
one to sample from a uniform distribution on the unit interval [0,1], and then apply a
simple transformation. Specifically, since the cumulative distribution function of T d=
TruncExp(τ,∞, 1) is FT (ν) = 1 − eτ−ν , for ν ≥ τ , and its inverse is F−1

T (ν) = τ −
log(1 − ν), it follows from Appendix B that T can be simulated using τ − log(R), where
R

d= R[0, 1].

It is not difficult to show this is also an unbiased estimator of (2). Observe that

IE[Ξ̂3] = e−(σ+τ)IE[I0(2
√
Tσ)]

= e−(σ+τ)
∫ ∞

τ
eτ−νI0(2

√
νσ)dν

=
∫ ∞

τ
e−σ−νI0(2

√
νσ)dν,

which is (2), implying Ξ̂3 is unbiased.

The variance of estimator Ξ̂3 is given by the expression

VV[Ξ̂3] = e−2(σ+τ) 1
N

VV[I0(2
√
Tσ)]

= e−2(σ+τ) 1
N

[
IE[I2

0 (2
√
Tσ)] −

(
IE[I0(2

√
Tσ)]

)2
]
. (37)

Using the definition of T , it follows that

IE[I2
0 (2

√
Tσ)] =

∫ ∞

τ
eτ−νI2

0 (2
√
νσ)dν, (38)
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and also
IE[I0(2

√
Tσ)] =

∫ ∞

τ
eτ−νI0(2

√
νσ)dν, (39)

so that numerical integration techniques can be applied to both (38) and (39), which then
yield a numerical estimate of (37). We will consider continuous estimator’s variances in
more detail in Section 4.

3.2.2 An Estimator Based on Theorem 1 Part (iii), with Uniform Sam-

pling Distribution: Ξ̂4

We now consider estimators of the Marcum Q-Function, based upon the results of Theorem
1, Parts (iii) and (iv), that use continuous sampling distributions. The first of these is
based upon a uniform samping distribution applied to Part (iii) of Theorem 1.

Let T be a uniformly distributed random variable on the interval [τ ∧ σ, τ ∨ σ], so that
T

d= R(τ ∧ σ, τ ∨ σ). Such a random variable has density fT (ν) = 1
(τ∧σ)−(τ∨σ) , for τ ∧ σ <

ν < τ ∨ σ. Since this density is independent of its free variable ν, we can insert it into
the expression in Part (iii) of Theorem 1, and multiply the integral by its reciprocal to
balance the equation. In view of this, we focus on the integral component of Part (iii) in
Theorem 1.

Observe that

I :=
∫ σ

τ
e−νI0(2

√
νσ)dν (40)

≡
∫ τ∨σ

τ∧σ
e−νI0(2

√
νσ)dν × (II[σ > τ ] − II[σ < τ ])

= [(τ ∨ σ) − (τ ∧ σ)]
∫ τ∨σ

τ∧σ
fR(ν)e−νI0(2

√
νσ)dν

× (II[σ > τ ] − II[σ < τ ]) . (41)

Consequently, (41) is in a suitable form to apply the SLLN (4) to produce a Monte Carlo
estimator. Specifically, if we let Tj

d= R(τ ∧ σ, τ ∨ σ) be a series of independent and
identically distributed uniform random variables, then we can derive estimates of the
Marcum Q-Function from

Ξ̂4 =
1
2
[1 − e−2σI0(2σ)] + e−σÎ, (42)

where I is estimated from

Î = ((τ ∨ σ) − (τ ∧ σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

e−TjI0(2
√
Tjσ). (43)

It is relatively straightforward to show that (42) is an unbiased estimator of the Marcum
Q-Function ρ(σ, τ). Its variance, however, is more involved. Note that the deterministic
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components in (42) contribute nothing to the estimator’s variance. Also, note that the
square of the difference of the indicator functions in (43) will be unity. Hence it follows
that

VV[Ξ̂4] = e−2σVV[Î]

= e−2σ 1
N

[(τ ∨ σ) − (τ ∧ σ)]2 VV
[
e−T I0(2

√
Tσ)

]

=
e−2σ

N
[(τ ∨ σ) − (τ ∧ σ)]2

×
(

IE[e−2T I2
0 (2

√
Tσ)] −

(
IE[e−T I0(2

√
Tσ)]

)2
)
. (44)

We can, as previously, use the definition of T to write the expectations in (44) as integrals,
but we do not include these here. The two expression (37) and (44), for the variances
of estimators Ξ̂3 and Ξ̂4 respectively, do not provide much insight into the appropriate
estimator’s performance per se. Mathematically, it is quite difficult to work out closed form
expressions that lead to useful simulation gain estimates. We will thus produce numerical
estimates and plots of simulation gains in Section 4. These expressions for estimator’s
variance have been included for completeness.

3.2.3 An Estimator Based upon Theorem 1, Part (iv) using a Uniform

Sampling Distribution: Ξ̂5

This estimator also uses a uniform sampling distribution, but is instead based upon Part
(iv) of Theorem 1. As previously, we let T d= R(τ ∧ σ, τ ∨ σ). The only part that involves
Monte Carlo estimation is the integral component in Part (iv) of Theorem 1. As in the
derivation of (41), observe that we can write

J :=
∫ σ

τ
e−νI0(2

√
ντ)dν (45)

≡
∫ τ∨σ

τ∧σ
e−νI0(2

√
ντ)dν × (II[σ > τ ] − II[σ < τ ]). (46)

Thus, as in the argument to construct the estimator (42), we can use (46) to produce the
estimator

Ξ̂5 =
1
2
[1 − e−2τ I0(2τ)] + e−σ−τ I0(2

√
στ) + e−τ Ĵ , (47)

where the integral (45) is estimated from

Ĵ = ((τ ∨ σ) − (τ ∧ σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

e−TjI0(2
√
Tjτ), (48)
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and each Tj is an independent realisation of T . Again, it is relatively straightforward to
show that (47) is an unbiased estimator of the Marcum Q-Function. Also, it is not difficult
to write down an expression for its variance. In particular, it can be shown that

VV[Ξ̂5] =
e−2τ

N
[(τ ∨ σ) − (τ ∧ σ)]2

×
(

IE[e−2T I2
0 (2

√
Tτ)] −

(
IE[e−T I0(2

√
Tτ)]

)2
)
. (49)

3.2.4 Estimator Based upon Theorem 1, Part (iii) with Truncated Ex-

ponential Sampling Distribution: Ξ̂6

We now consider using a sampling distribution based upon a truncated exponential family.
In this case, we consider Part (iii) of Theorem 1, and in view of the integral (40), we
introduce a Truncated Exponential distribution T

d= TruncExp(τ ∧ σ, τ ∨ σ, 1). Such a
distribution has density fT (t) = e−t

e−(τ∧σ)−e−(τ∨σ) , and can be simulated using − log[e−(τ∧σ)−

R[e−(τ∧σ) − e−(τ∨σ)], where R d= R[0, 1].

Let K̂ be the estimator

K̂ = (e−(τ∧σ) − e−(τ∨σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

I0(2
√
Tjσ), (50)

where each Tj
d= TruncExp(τ ∧ σ, τ ∨ σ, 1). Then we can define the estimator

Ξ̂6 =
1
2
[1 − e−2σI0(2σ)] + e−σK̂. (51)

It is again not difficult to show this is an unbiased estimator of (2), with variance given
by

VV[Ξ̂6] =
e−2σ

N

[
e−(τ∧σ) − e−(τ∨σ)

]2

×
(

IE[I2
0 (2

√
Tσ)] −

(
IE[I0(2

√
Tσ)]

)2
)
. (52)

3.2.5 An Estimator Based upon Part (iv) of Theorem 1 with Truncated

Exponential Sampling Distribution: Ξ̂7

The final estimator we consider is also based upon a Truncated Exponential distribution,
using Part (iv) of Theorem 1. Let L̂ be the estimator

L̂ = (e−(τ∧σ) − e−(τ∨σ)) (II[σ > τ ] − II[σ < τ ])
1
N

N∑

j=1

I0(2
√
Tjτ), (53)
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where each Tj
d= TruncExp(τ ∧ σ, τ ∨ σ, 1) are independent random variables. Then we

can define
Ξ̂7 =

1
2
[1 − e−2τ I0(2τ)] + e−σ−τI0(2

√
στ ) + e−τ L̂. (54)

It is also easy to show this is an unbiased estimator of (2), with variance given by

VV[Ξ̂7] =
e−2τ

N

[
e−(τ∧σ) − e−(τ∨σ)

]2

×
(

IE[I2
0 (2

√
Tτ)] −

(
IE[I0(2

√
Tτ)]

)2
)
. (55)
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4 Performance and Analysis of Estimators

We now consider the performance of the estimators introduced in Section 3. This will
be done by considering numerical estimates, and comparing them to estimates obtained
by numerical integration. In particular, we will be interested in how these estimators
perform in comparison to Adaptive Simpson Quadrature (ASQ) [Lyness and Kaganove
1976]. Throughout we will use a tolerance of 10−8 for ASQ. Additionally, we will include
some comparisons to results based upon truncated Taylor series approximations [Shnidman
1989]. We base the latter on the following Taylor series expansion, which can be found in
[Schwartz, Bennett and Stein 1996, Equation A-4-7]:

ρ(σ, τ) = 1 − e−(σ+τ)
∞∑

m=1

(√ τ

σ

)m
Im(2

√
στ). (56)

One can truncate the Taylor series in (56), and use the partial sum as an approximation
for ρ(σ, τ).

Before presenting these numerical comparisons, we firstly consider simulation gains.

4.1 Simulation Gains

Appendix C contains a number of plots of simulation gains. For the sake of brevity, we
only consider a subset of the 21 possible combinations of pairs of 7 estimators. Recall
that the simulation gain Γ measures the number of simulation runs one estimator needs
to match the same level of variance as another estimator. Thus it can indicate whether
one estimator will perform as well as another, except for less simulation runs.

To begin, we consider whether the Importance Sampling estimator Ξ̂2 is an improvement
on the standard Poisson estimator Ξ̂1. Figure C.1 shows a plot of the simulation gain (34),
with the IS estimator using θ = 2. The surface shows the logarithmic gain, as a function
of σ and τ . Figure C.2 shows a cross sectional view of it. In view of (34), since the surface
shows that log(Γ) < 0, we conclude that the estimator Ξ̂1 will be more efficient. Also,
similar such simulation gain plots, for θ increasing in the IS estimator Ξ̂2, did not indicate
that the IS estimator is more efficient than Ξ̂1.

Figures C.3 to C.10 provide gain plots, comparing the Poisson estimator Ξ̂1 to some of
the estimators based upon continuous sampling distributions and the results of Theorem
1, Parts (iii) and (iv). In these plots the gain Γ is the ratio of the number of simulations
used in estimators Ξ̂4, Ξ̂5, Ξ̂6 and Ξ̂7, compared to the number of simulations needed for
the Poisson Estimator Ξ̂1. In these cases if Γ is greater than zero on the logarithmic scale,
the Poisson Estimator requires less simulation runs.

Figure C.3 compares the estimator Ξ̂4 to Ξ̂1, and as the cross-sectional view shows in
Figure C.4, there are only small regions where Ξ̂4 will be more efficient.

Figure C.5 examines the performance of Ξ̂5 relative to Ξ̂1, and Figure C.6 shows a cross-
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sectional view. As for the previous case, there are regions where the continuous estimator
outperforms the Poisson estimator.

Figure C.7, in contrast to the two examples considered previously, showed significant global
improvements on the estimator Ξ̂1. This plot is of the gain of estimator Ξ̂6 relative to Ξ̂1.
Both Figure C.7, and the cross-sectional plot of Figure C.8, show that the estimator Ξ̂6

will frequently outperform the Poisson estimator.

The final comparison we consider is that of the simulation gain of estimator Ξ̂7 relative
to Ξ̂1. As can be observed from Figures C.9 and C.10, there are many choices of σ and
τ -parameters which will result in simulation savings in using estimator Ξ̂7.

The Figures show that for each estimator there are values of σ and τ for which less
simulation runs are required than for Ξ̂1.

The main conclusion from these simulation gain plots is that some of the estimators based
upon Theorem 1, Parts (iii) and (iv), will outperform the discrete Poisson estimator,
based upon Part (ii) of Theorem 1. Estimators Ξ̂6 and Ξ̂7 showed the most promise,
while the other continuous estimators considered also had regions where improvements
over the Poisson estimator were possible. Clearly, the Importance Sampling estimator Ξ̂2

had inferior performance to the Poisson estimator Ξ̂1.

4.2 Numerical Results

We now consider numerical results of these estimators, and will be more interested in
accuracy when compared to results obtained using ASQ. All estimates can be found in
the Tables in Appendix D. Table D.1 contains some estimates of ρ(σ, τ) based upon a
truncated Taylor series approximation using (56). The partial sum uses 100 terms to
obtain the estimate. Table D.1 also contains estimates obtained using ASQ, and the
absolute error between the estimates is included. This error is just the difference between
the two estimates. These results will be used to compare the performance of the estimators
of Section 3. We do not consider the IS estimator Ξ̂2, due to the fact that its simulation
gain plot showed it to be generally inferior to the Poisson estimator Ξ̂1.

Table D.2 contains a selection of estimates for estimator Ξ̂1. The two free parameters σ
and τ range from 1 to 5, and the Table shows estimates based on samples using N = 103,
104, 105 and 106. Each estimate is compared to one obtained via ASQ, and the absolute
error is also given. The Table shows that the estimator performs well for larger N , but
still requires a larger sample size to achieve more uniform accuracy.

Table D.3 shows the performance of the standard continuous estimator Ξ̂3, again with
comparisons to results based on ASQ, and with N varying as in Table D.2. The errors
seem consistently smaller than those obtained in Table D.2, indicating Ξ̂3 is slighly more
accurate. Overall, however, there is not a major improvement over Ξ̂1, just a small order
of magnitude improvement.
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We now consider estimators based upon the stochastic representations of Theorem 1, Parts
(iii) and (iv). Tables D.4 and D.5 contain estimates based upon Ξ̂4 and Ξ̂6. Both these
estimators are based upon Part (iii) of Theorem 1, with Ξ̂4 using a uniform sampling
distribution, and Ξ̂6 employing a Truncated Exponential sampling distribution. Table D.4
shows estimates using N = 103 and 104, and compares results again to those obtained via
ASQ. It is clear that for the relatively modest sample sizes, these estimators are performing
better than those considered in Tables D.2 and D.3. The results in Table 5 are generated
for the same estimators as in Table D.4, but use N = 105 and 106. These show further
improvements are made on the accuracy of estimators Ξ̂4 and Ξ̂6.

Tables D.6 and D.7 show simulation results using estimators Ξ̂5 and Ξ̂7, which are based
upon Theorem 1, Part (iv). Ξ̂5 uses a uniformly sampled distribution, while Ξ̂7 is based
upon a Truncated Exponential distribution. Table D.6 contains results for the case where
N = 103 and 104, while Table D.7 contains estimates for N = 105 and 106. These two
Tables show that both estimators are performing well, and that Ξ̂5 is performing extremely
well in some cases.

The final set of estimates can be found in Table D.8, which directly compares the perfor-
mance of estimators Ξ̂4, Ξ̂5, Ξ̂6 and Ξ̂7. Each estimator uses a sample of size N = 106, and
each result is again compared to ASQ. As can be observed, the estimators are performing
well for this number of simulations, with Ξ̂5 returning the smallest errors on average.

It is interesting to compare the results of Table D.8 with those in Table D.1, the latter being
estimates based upon a partial sum approximation of (56). A sample size of N = 106,
for each of the estimators considered in Table D.8, are not as accurate as an estimate
based upon a partial sum of 100 terms. Increasing N in these estimators will improve
their accuracy, but will increase computation times. It is worth noting, however, that the
computation time to compute the partial sum series from (56) is faster than computing
106 simulation runs in a Monte Carlo estimator. This sample size issue is a significant
limiting factor on the application of Monte Carlo methods.
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5 Conclusions

This report is an investigation of the Monte Carlo estimation of Marcum’s Q-Function.
Using some new stochastic representations derived in [Weinberg 2005], together with a
new result derived in this report, seven estimators were defined and analysed. Two of
these estimators were based upon discrete sampling distributions. One was based upon
the Poisson association in Part (ii) of Theorem 1. The second was an importance sampling
estimator, using a tilted sampling distribution. It was found that the Poisson estimator
Ξ̂1 was the better of the two estimators. The remaining five estimators used continuous
sampling distributions. One was based upon a Truncated Exponential Distribution, on
the semi-infinite domain [τ,∞). The remaining four estimators were based upon Parts (iii)
and (iv) of Theorem 1. Two used Uniform sampling distributions, while the remaining
pair used Truncated Exponential sampling distributions, on a finite domain. Out of all
the continuous estimators, it was found that they had regions where they performed very
well, and similarly regions where their performance was moderate. It was found that the
most efficient of the seven estimators was the one based upon Part (iv) of Theorem 1,
using a uniform sampling distribution, referred to as Ξ̂5.

The performance analysis of the seven estimators indicated that large sample sizes are
needed to obtain accurate results, although some of the estimators returned accurate
results for relatively small sample sizes, such as Ξ̂5 and Ξ̂7. Simulation gain considerations
indicated that a number of these estimators may be useful from a practical perspective.
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Appendix A: Some Properties of Statistical

Variance

For completeness we provide a concise outline of the definitions of statistical means and
variances of random variables, as well as some properties of variances used throughout
this report. The interested reader is referred to [Billingsley 1995] for a rigorous treatment
of the foundations of probability, while the more practically oriented reader is referred to
[Durrett 1996 and Ross 2002].

Suppose X : Ω −→ IR is a random variable on a probability space (Ω,F , IP). Its mean or
expectation is defined by the the integral

IE[X] :=
∫

Ω
X(ω)IP(dω). (A.1)

In the case of an atomic measure, or equivalently, X takes discrete values, the expectation
(A.1) reduces to a weighted sum of the values of X, with weights being the associated
point probabilities. If the probability measure is absolutely continuous with repect to
Lebesgue measure µ on the real line, then by the Radon-Nikodym Theorem, there exists
a derivative g(ω), known as a density, such that IP(dω) = g(ω)µ(dω). This implies (A.1)
becomes

IE[X] =
∫

IR
X(ω)g(ω)µ(dω). (A.2)

Random variables with such a density are known as continuous, and (A.2) is the well-
known expression for the expectation of such random variables.

The variance of a random variable X is defined to be its average squared deviation from
its mean. Specifically, we can write this as

VV[X] := IE
(
[X − IE[X]]2

)
. (A.3)

By expanding out the expression in (A.3), it can be shown that

VV[X] := IE[X2] − (IE[X])2 , (A.4)

which is in a useful form for numerical estimation.

Suppose α, β ∈ Ω are scalar constants, and that X and Y are integrable random variables.
It is not difficult to show that the statistical expectation is a linear operator, which implies
that IE[αX + βY ] = αIE[X] + βIE[Y ]. Statistical variance, on the other hand, is not a
linear operator. However, it has a number of useful properties, which we now consider.
The first is that the variance of a scalar multiple of a random variable is just its square
times the variance of the underlying random variable:

VV[αX] = α2VV[X]. (A.5)

Another interesting fact is that a constant added to a random variable contributes nothing
to its variation from its mean:

VV[X + α] = VV[X]. (A.6)
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This property has been used in the calculation of the variances of estimators based upon
Theorem 1, Parts (iii) and (iv).

The final property of statistical variance that we consider provides an expression for the
variance of a sum of two random variables:

VV[X + Y ] = VV[X] + 2CC[X,Y ] + VV[Y ], (A.7)

where CC[X,Y ] := IE[(X − IE[X])(Y − IE[Y ])] is known as the covariance of X and Y .
It gives a measure of the association between the two random variables. In the case
where these random variables are independent, it can be shown that CC[X,Y ] = 0 and
consequently the variance of the two in (A.7) reduces to the sum of the two respective
variances. This property has been used extensively in the report, since the Monte Carlo
estimators are sums of independent random variables.
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Appendix B: Generation of Realisations of

Random Variables

We provide some notes on the generation of realisations of both discrete and continuous
random variables, since this is critical to the Monte Carlo sampling approach to estimation.
An excellent guide to simulation is [Ross 2002], where both the theory of simulation and
practical algorithms are considered. In particular, Chapter 4 of [Ross 2002] contains an
extensive overview of the techniques of generating discrete random variables, while Chapter
5 deals with the continuous case.

Most of the basic algorithms for simulation of random variables operate by transforming
a random number in the unit interval [0, 1] to a realisation of the given random variable.
The reason for this is that it is relatively easy numerically to generate a random sample of
numbers between 0 and 1. To illustrate this, one can use the digits of π to generate such
a series of random numbers.

Suppose we have a discrete random variable X, which takes values xj with point probabil-
ities pj for j ∈ {0, 1, 2, . . . m}. Then we can generate a realisation of X using the following
algorithm, known as the Inverse Transform Method:

1. Generate a random number r ∈ [0, 1];

2. If r < p0 then x0 is the realisation, and stop, else

3. If r < p0 + p1 then x1 is the realisation, and stop, else

4. If r < p0 + p1 + p2 then x2 is the realisation, and stop, else continue.

This method is examined extensively in [Ross 2002], to which the reader is referred. The
only discrete Monte Carlo estimators considered in this report were based upon Poisson
sampling distributions. Section 4.2 of [Ross 2002] provides an algorithm exploiting some
of the properties of this distribution. We assume X d= Po(λ), and that r ∈ [0, 1] is a
random number. The following algorithm has been taken from [Ross 2002]:

1. Set i = 0, p = e−λ, F = p;

2. If r < F , set x = i and stop, else

3. p = λp
i+1 , F := F + p, i := i+ 1 and return to Step 2.

When the algorithm has finished running, the number x will be a realisation of the Poisson
random variable. It can be shown that the average number of runs of this algorithm is
approximately 1 + 0.798

√
λ [see Ross 2002].

A number of other algorithms are considered in [Ross 2002], to which the reader is referrred.
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The Inverse Transform Algorithm is actually based upon the following result, which we
state in terms of continuous random variables:

Lemma B.1 If X is a continuous random variable with cumulative distribution function
FX , and R d= R[0, 1] then

F−1
X (R) d= X. (B.1)

The proof of Lemma B.1 is relatively simple, and can be found in [Ross 2002]. This means
that a continuous random variable can be simulated by inverting its cumulative distrib-
ution function, and evaluating it at a random number in the unit interval [0, 1]. For the
Monte Carlo estimators considered in this report, inverting the cumulative distribution
function of the sampling distribution is relatively easy. Specifically, the only estimators
where this has been necessary to do have used Truncated Exponential sampling distribu-
tions. The latter have easily inverted cumulative distribution functions.

The last result we present is a useful property of uniform random numbers in the interval
[0, 1]:

Lemma B.2 If R d= R[0, 1] then 1 −R
d= R[0, 1].

This is an obvious result, but we provide a short proof for the interested reader. We
remark that this is frequently used in conjunction with Lemma B.1 in the generation of
realisations of continuous random variables.

To prove Lemma B.2, let Z = 1 −R and z ∈ [0, 1]. Then observe that

IP[Z ≤ z] = IP[1 −R ≤ z]

= IP[R ≥ 1 − z]

= 1 − IP[R < 1 − z],

and since 1 − z ∈ [0, 1] also we note that

IP[Z ≤ z] = 1 − (1 − z)

= z,

implying Z has the same distribution function asR. 2

30



DSTO–RR–0311

Appendix C: Simulation Gains
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Figure C.1: The simulation gain (26) as a surface in 3-space, with the gain measured in
a logarithmic scale of Poisson estimator Ξ̂1versus estimator Ξ̂2
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Figure C.2: Two cross sectional views of the logarithmic gain in Figure 1. The first subplot
shows the gain as a function of σ, with τ = 20, while the second subplot is the gain as a
function of τ , with σ = 1.
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Figure C.3: The simulation gain (26) as a surface in 3-space, with the gain measured in
a logarithmic scale of estimator Ξ̂4 versus Poisson estimator Ξ̂1
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Figure C.4: Two cross sectional views of the logarithmic gain in Figure 3. The first subplot
shows the gain as a function of σ, with τ = 20, while the second subplot is the gain as a
function of τ , with σ = 20.
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Figure C.5: The simulation gain (26) as a surface in 3-space, with the gain measured in
a logarithmic scale of estimator Ξ̂5 versus Poisson estimator Ξ̂1
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Figure C.6: Two cross sectional views of the logarithmic gain in Figure 5. The first subplot
shows the gain as a function of σ, with τ = 16, while the second subplot is the gain as a
function of τ , with σ = 1.
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Figure C.7: The simulation gain (26) as a surface in 3-space, with the gain measured in
a logarithmic scale of estimator Ξ̂6 versus Poisson estimator Ξ̂1
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Figure C.8: Two cross sectional views of the logarithmic gain in Figure 7. The first subplot
shows the gain as a function of σ, with τ = 16, while the second subplot is the gain as a
function of τ , with σ = 1.
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Figure C.9: The simulation gain (26) as a surface in 3-space, with the gain measured in
a logarithmic scale of estimator Ξ̂7 versus Poisson estimator Ξ̂1
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Figure C.10: Two cross sectional views of the logarithmic gain in Figure 9. The first
subplot shows the gain as a function of σ, with τ = 16, while the second subplot is the gain
as a function of τ , with σ = 1.
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Appendix D: Tables of Numerical Results

Table D.1: A selection of estimates of ρ(σ, τ), based on a partial sum of 100 terms using
Equation (56). For each (σ, τ) pair, an estimate is compared to one obtained by Adaptive
Simpson Quadrature (ASQ), with a tolerance of 10−8. ε1 is the absolute error between the
ASQ estimate, and that based upon Equation (56).

σ τ ASQ Estimate using Equation (56) ε1
1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94296858892332e-001 7.2174e-012
1.00 3.00 2.24984708801310e-001 2.24984708790304e-001 1.1006e-011
1.00 4.00 1.23381447904444e-001 1.23381447854823e-001 4.9621e-011
1.00 5.00 6.56319493789875e-002 6.56319492124853e-002 1.6650e-010
2.00 1.00 8.17415225126923e-001 8.17415225069612e-001 5.7311e-011
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 -1.1102e-016
2.00 3.00 4.14710585222029e-001 4.14710585234130e-001 -1.2101e-011
2.00 4.00 2.70039453942757e-001 2.70039453948642e-001 -5.8854e-012
2.00 5.00 1.68568913522749e-001 1.68568913530132e-001 -7.3827e-012
3.00 1.00 9.06136886710340e-001 9.06136886583505e-001 1.2684e-010
3.00 2.00 7.53011300651773e-001 7.53011300627772e-001 2.4001e-011
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 2.2204e-016
3.00 4.00 4.26907556449231e-001 4.26907556460672e-001 -1.1441e-011
3.00 5.00 2.98193396308125e-001 2.98193396374000e-001 -6.5875e-011
4.00 1.00 9.52770303245878e-001 9.52770303246472e-001 -5.9441e-013
4.00 2.00 8.51936356981248e-001 8.51936356942411e-001 3.8837e-011
4.00 3.00 7.16950482726697e-001 7.16950482718797e-001 7.8992e-012
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 1.1102e-016
4.00 5.00 4.35072015844931e-001 4.35072015850586e-001 -5.6550e-012
5.00 1.00 9.76650054658845e-001 9.76650054770644e-001 -1.1180e-010
5.00 2.00 9.13934477595961e-001 9.13934477600213e-001 -4.2516e-012
5.00 3.00 8.14938772496419e-001 8.14938772486556e-001 9.8631e-012
5.00 4.00 6.92981835299699e-001 6.92981835296982e-001 2.7168e-012
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000

37



DSTO–RR–0311

Table D.2: Estimates of ρ(σ, τ), based upon the estimator Ξ̂1. For each (σ, τ) pair, an
estimate is compared to one obtained by ASQ, with a tolerance of 10−8. ε1 is the absolute
error between the exact result and Ξ̂1.

σ τ ASQ N = 103 Ξ̂1 ε1 N = 104 Ξ̂1 ε1
1.00 1.00 6.54254161276836e-001 6.59663019936582e-001 -5.4089e-003 6.50360378055821e-001 3.8938e-003
1.00 2.00 3.94296858899549e-001 3.85194290598783e-001 9.1026e-003 3.92362850179273e-001 1.9340e-003
1.00 3.00 2.24984708801310e-001 2.17743743506852e-001 7.2410e-003 2.26391570580864e-001 -1.4069e-003
1.00 4.00 1.23381447904444e-001 1.30685746598897e-001 -7.3043e-003 1.24564904290777e-001 -1.1835e-003
1.00 5.00 6.56319493789875e-002 6.40133039692288e-002 1.6186e-003 6.58733516713669e-002 -2.4140e-004
2.00 1.00 8.17415225126923e-001 8.08786922481781e-001 8.6283e-003 8.16190325312452e-001 1.2249e-003
2.00 2.00 6.03500960611993e-001 5.99414147437010e-001 4.0868e-003 5.99124590079898e-001 4.3764e-003
2.00 3.00 4.14710585222029e-001 4.12974008074643e-001 1.7366e-003 4.17823901762987e-001 -3.1133e-003
2.00 4.00 2.70039453942757e-001 2.87372723033554e-001 -1.7333e-002 2.68488904729298e-001 1.5505e-003
2.00 5.00 1.68568913522749e-001 1.66041880977511e-001 2.5270e-003 1.71171430841358e-001 -2.6025e-003
3.00 1.00 9.06136886710340e-001 9.03764463728220e-001 2.3724e-003 9.04907858216395e-001 1.2290e-003
3.00 2.00 7.53011300651773e-001 7.57008385124267e-001 -3.9971e-003 7.49426192255081e-001 3.5851e-003
3.00 3.00 5.83328716319908e-001 5.91643315593691e-001 -8.3146e-003 5.81100102494980e-001 2.2286e-003
3.00 4.00 4.26907556449231e-001 4.09232406814433e-001 1.7675e-002 4.30487426966499e-001 -3.5799e-003
3.00 5.00 2.98193396308125e-001 2.96272130229952e-001 1.9213e-003 2.98006067142840e-001 1.8733e-004
4.00 1.00 9.52770303245878e-001 9.52507276019420e-001 2.6303e-004 9.50171195028357e-001 2.5991e-003
4.00 2.00 8.51936356981248e-001 8.51822728323425e-001 1.1363e-004 8.53790401511696e-001 -1.8540e-003
4.00 3.00 7.16950482726697e-001 7.13097900186227e-001 3.8526e-003 7.17287156477901e-001 -3.3667e-004
4.00 4.00 5.71715890928425e-001 5.59632865997872e-001 1.2083e-002 5.74210225421900e-001 -2.4943e-003
4.00 5.00 4.35072015844931e-001 4.23091200594429e-001 1.1981e-002 4.30558437079540e-001 4.5136e-003
5.00 1.00 9.76650054658845e-001 9.77959383696456e-001 -1.3093e-003 9.76492236079186e-001 1.5782e-004
5.00 2.00 9.13934477595961e-001 9.23956427259091e-001 -1.0022e-002 9.12224012645041e-001 1.7105e-003
5.00 3.00 8.14938772496419e-001 8.17799270221826e-001 -2.8605e-003 8.19316112259624e-001 -4.3773e-003
5.00 4.00 6.92981835299699e-001 7.09843084153854e-001 -1.6861e-002 6.85342014730607e-001 7.6398e-003
5.00 5.00 5.63916668581714e-001 5.68704289502493e-001 -4.7876e-003 5.65107395707819e-001 -1.1907e-003

σ τ ASQ N = 105 Ξ̂1 ε1 N = 106 Ξ̂1 ε1
1.00 1.00 6.54254161276836e-001 6.53782077383129e-001 4.7208e-004 6.54330711738798e-001 -7.6550e-005
1.00 2.00 3.94296858899549e-001 3.94392475570467e-001 -9.5617e-005 3.94434963977153e-001 -1.3811e-004
1.00 3.00 2.24984708801310e-001 2.24678879648360e-001 3.0583e-004 2.25374718271147e-001 -3.9001e-004
1.00 4.00 1.23381447904444e-001 1.22795178392011e-001 5.8627e-004 1.23161681422234e-001 2.1977e-004
1.00 5.00 6.56319493789875e-002 6.56362957143730e-002 -4.3463e-006 6.56172255656532e-002 1.4724e-005
2.00 1.00 8.17415225126923e-001 8.17480136368409e-001 -6.4911e-005 8.17248105021029e-001 1.6712e-004
2.00 2.00 6.03500960611993e-001 6.04135576691294e-001 -6.3462e-004 6.03134593656892e-001 3.6637e-004
2.00 3.00 4.14710585222029e-001 4.14206316640914e-001 5.0427e-004 4.14698457454405e-001 1.2128e-005
2.00 4.00 2.70039453942757e-001 2.70776906458255e-001 -7.3745e-004 2.69970795292826e-001 6.8659e-005
2.00 5.00 1.68568913522749e-001 1.69365858333398e-001 -7.9694e-004 1.68718140430055e-001 -1.4923e-004
3.00 1.00 9.06136886710340e-001 9.06018830365911e-001 1.1806e-004 9.06183146646901e-001 -4.6260e-005
3.00 2.00 7.53011300651773e-001 7.53905328428387e-001 -8.9403e-004 7.52755663345111e-001 2.5564e-004
3.00 3.00 5.83328716319908e-001 5.84539256814320e-001 -1.2105e-003 5.83258987927966e-001 6.9728e-005
3.00 4.00 4.26907556449231e-001 4.26570791546415e-001 3.3676e-004 4.27102889049943e-001 -1.9533e-004
3.00 5.00 2.98193396308125e-001 2.98434620073621e-001 -2.4122e-004 2.98038165920483e-001 1.5523e-004
4.00 1.00 9.52770303245878e-001 9.52433042857598e-001 3.3726e-004 9.52855908650958e-001 -8.5605e-005
4.00 2.00 8.51936356981248e-001 8.51631242117646e-001 3.0511e-004 8.51895133387747e-001 4.1224e-005
4.00 3.00 7.16950482726697e-001 7.15850360579888e-001 1.1001e-003 7.16728656850178e-001 2.2183e-004
4.00 4.00 5.71715890928425e-001 5.72715698209388e-001 -9.9981e-004 5.72184483654959e-001 -4.6859e-004
4.00 5.00 4.35072015844931e-001 4.36055921252495e-001 -9.8391e-004 4.35513104967410e-001 -4.4109e-004
5.00 1.00 9.76650054658845e-001 9.76506652946475e-001 1.4340e-004 9.76700032704114e-001 -4.9978e-005
5.00 2.00 9.13934477595961e-001 9.14728901446874e-001 -7.9442e-004 9.14001592767651e-001 -6.7115e-005
5.00 3.00 8.14938772496419e-001 8.15676367093696e-001 -7.3759e-004 8.15042078532561e-001 -1.0331e-004
5.00 4.00 6.92981835299699e-001 6.92108253233747e-001 8.7358e-004 6.93350564796337e-001 -3.6873e-004
5.00 5.00 5.63916668581714e-001 5.63164165210903e-001 7.5250e-004 5.64265650772492e-001 -3.4898e-004
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Table D.3: Estimates of ρ(σ, τ), based upon the estimator Ξ̂3. For each (σ, τ) pair, an
estimate is compared to one obtained by ASQ, with a tolerance of 10−8. ε1 is the absolute
error between the ASQ estimate and Ξ̂3.

σ τ ASQ N = 103 Ξ̂3 ε1 N = 104 Ξ̂3 ε1
1.00 1.00 6.54254161276836e-001 6.42351791738002e-001 1.1902e-002 6.47813986346734e-001 6.4402e-003
1.00 2.00 3.94296858899549e-001 3.84581796920965e-001 9.7151e-003 3.95055852211444e-001 -7.5899e-004
1.00 3.00 2.24984708801310e-001 2.23945975009446e-001 1.0387e-003 2.25765300947652e-001 -7.8059e-004
1.00 4.00 1.23381447904444e-001 1.27490629537926e-001 -4.1092e-003 1.22895779602500e-001 4.8567e-004
1.00 5.00 6.56319493789875e-002 6.39595113545533e-002 1.6724e-003 6.58885895504813e-002 -2.5664e-004
2.00 1.00 8.17415225126923e-001 8.48389410777061e-001 -3.0974e-002 8.02840130950167e-001 1.4575e-002
2.00 2.00 6.03500960611993e-001 6.22660876505515e-001 -1.9160e-002 5.91721898338978e-001 1.1779e-002
2.00 3.00 4.14710585222029e-001 3.91210406341459e-001 2.3500e-002 4.12100036069522e-001 2.6105e-003
2.00 4.00 2.70039453942757e-001 2.67333456505119e-001 2.7060e-003 2.67843599430930e-001 2.1959e-003
2.00 5.00 1.68568913522749e-001 1.61550881730203e-001 7.0180e-003 1.69613775897855e-001 -1.0449e-003
3.00 1.00 9.06136886710340e-001 7.88022736235007e-001 1.1811e-001 9.10184840635533e-001 -4.0480e-003
3.00 2.00 7.53011300651773e-001 6.69025867145190e-001 8.3985e-002 7.14221776509817e-001 3.8790e-002
3.00 3.00 5.83328716319908e-001 5.57420230430789e-001 2.5908e-002 5.87272503477971e-001 -3.9438e-003
3.00 4.00 4.26907556449231e-001 4.23768363216703e-001 3.1392e-003 4.22173707770064e-001 4.7338e-003
3.00 5.00 2.98193396308125e-001 3.54706792528251e-001 -5.6513e-002 2.99752426131303e-001 -1.5590e-003
4.00 1.00 9.52770303245878e-001 9.42441640335310e-001 1.0329e-002 8.38828291254819e-001 1.1394e-001
4.00 2.00 8.51936356981248e-001 7.42459380843225e-001 1.0948e-001 8.43738914198135e-001 8.1974e-003
4.00 3.00 7.16950482726697e-001 6.29249481147251e-001 8.7701e-002 7.33637956665969e-001 -1.6687e-002
4.00 4.00 5.71715890928425e-001 5.73960509726093e-001 -2.2446e-003 6.14784521432351e-001 -4.3069e-002
4.00 5.00 4.35072015844931e-001 3.74332332071409e-001 6.0740e-002 4.56334092417138e-001 -2.1262e-002
5.00 1.00 9.76650054658845e-001 1.82160744307321e+000 -8.4496e-001 1.04564373266554e+000 -6.8994e-002
5.00 2.00 9.13934477595961e-001 1.35808204532641e+000 -4.4415e-001 9.86783853314269e-001 -7.2849e-002
5.00 3.00 8.14938772496419e-001 1.03824213755018e+000 -2.2330e-001 8.03249822925602e-001 1.1689e-002
5.00 4.00 6.92981835299699e-001 6.44248629605388e-001 4.8733e-002 7.01817499213763e-001 -8.8357e-003
5.00 5.00 5.63916668581714e-001 4.86413080005933e-001 7.7504e-002 5.76199915419100e-001 -1.2283e-002

σ τ ASQ N = 105 Ξ̂3 ε1 N = 106 Ξ̂3 ε1
1.00 1.00 6.54254161276836e-001 6.54040572750096e-001 2.1359e-004 6.54054793604104e-001 1.9937e-004
1.00 2.00 3.94296858899549e-001 3.94480768124019e-001 -1.8391e-004 3.94700830230529e-001 -4.0397e-004
1.00 3.00 2.24984708801310e-001 2.25088605527676e-001 -1.0390e-004 2.24780014304186e-001 2.0469e-004
1.00 4.00 1.23381447904444e-001 1.23354460768421e-001 2.6987e-005 1.23487855731148e-001 -1.0641e-004
1.00 5.00 6.56319493789875e-002 6.57255937823738e-002 -9.3644e-005 6.56356163389027e-002 -3.6670e-006
2.00 1.00 8.17415225126923e-001 8.13101167357929e-001 4.3141e-003 8.17058974458540e-001 3.5625e-004
2.00 2.00 6.03500960611993e-001 6.03530267194846e-001 -2.9307e-005 6.03663028146881e-001 -1.6207e-004
2.00 3.00 4.14710585222029e-001 4.14085627724929e-001 6.2496e-004 4.14618831126164e-001 9.1754e-005
2.00 4.00 2.70039453942757e-001 2.69730354883825e-001 3.0910e-004 2.70611450811507e-001 -5.7200e-004
2.00 5.00 1.68568913522749e-001 1.69058964500188e-001 -4.9005e-004 1.68407891936721e-001 1.6102e-004
3.00 1.00 9.06136886710340e-001 9.02097692305598e-001 4.0392e-003 8.96295234852391e-001 9.8417e-003
3.00 2.00 7.53011300651773e-001 7.46480080922404e-001 6.5312e-003 7.51461245093084e-001 1.5501e-003
3.00 3.00 5.83328716319908e-001 5.79016367117777e-001 4.3123e-003 5.83665782360501e-001 -3.3707e-004
3.00 4.00 4.26907556449231e-001 4.23438123445503e-001 3.4694e-003 4.28286131002742e-001 -1.3786e-003
3.00 5.00 2.98193396308125e-001 3.00914377642216e-001 -2.7210e-003 2.98471672558105e-001 -2.7828e-004
4.00 1.00 9.52770303245878e-001 9.66625883042089e-001 -1.3856e-002 9.46314040220739e-001 6.4563e-003
4.00 2.00 8.51936356981248e-001 8.21055664707472e-001 3.0881e-002 8.60765986551164e-001 -8.8296e-003
4.00 3.00 7.16950482726697e-001 7.14543879762383e-001 2.4066e-003 7.16205642122862e-001 7.4484e-004
4.00 4.00 5.71715890928425e-001 5.69415946836832e-001 2.2999e-003 5.72197277563860e-001 -4.8139e-004
4.00 5.00 4.35072015844931e-001 4.37475971268682e-001 -2.4040e-003 4.31889095683744e-001 3.1829e-003
5.00 1.00 9.76650054658845e-001 9.47719137363388e-001 2.8931e-002 9.73953446195458e-001 2.6966e-003
5.00 2.00 9.13934477595961e-001 8.71030178437251e-001 4.2904e-002 9.14222131583857e-001 -2.8765e-004
5.00 3.00 8.14938772496419e-001 7.90588059645628e-001 2.4351e-002 8.03082542159992e-001 1.1856e-002
5.00 4.00 6.92981835299699e-001 6.93211245758518e-001 -2.2941e-004 6.91548097188014e-001 1.4337e-003
5.00 5.00 5.63916668581714e-001 5.76094358409922e-001 -1.2178e-002 5.64368323108793e-001 -4.5165e-004
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Table D.4: A selection of estimates of ρ(σ, τ), based upon the estimators Ξ̂4 and Ξ̂6. For
each (σ, τ) pair, an estimate is compared to one obtained by ASQ, with a tolerance of
10−8. Both ε1 and ε2 are the absolute error between the ASQ estimate and Ξ̂4 and Ξ̂6

respectively. The first half of the table sets N = 103 while the second sets N = 104.

σ τ ASQ Ξ̂4 ε1 Ξ̂6 ε2
1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.93105809320516e-001 1.1910e-003 3.94237101841408e-001 5.9757e-005
1.00 3.00 2.24984708801310e-001 2.21679512438498e-001 3.3052e-003 2.23010390592652e-001 1.9743e-003
1.00 4.00 1.23381447904444e-001 1.23120821402061e-001 2.6063e-004 1.19680878137504e-001 3.7006e-003
1.00 5.00 6.56319493789875e-002 6.74948004042000e-002 -1.8629e-003 3.48652869148997e-002 3.0767e-002
2.00 1.00 8.17415225126923e-001 8.17522174185000e-001 -1.0695e-004 8.16810694255860e-001 6.0453e-004
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 0.0000e+000 6.03500960611993e-001 0.0000e+000
2.00 3.00 4.14710585222029e-001 4.15061513519558e-001 -3.5093e-004 4.13229078967856e-001 1.4815e-003
2.00 4.00 2.70039453942757e-001 2.66871137161905e-001 3.1683e-003 2.65199467166843e-001 4.8400e-003
2.00 5.00 1.68568913522749e-001 1.64444988948738e-001 4.1239e-003 1.59395887758102e-001 9.1730e-003
3.00 1.00 9.06136886710340e-001 9.06917615676326e-001 -7.8073e-004 9.08324740882525e-001 -2.1879e-003
3.00 2.00 7.53011300651773e-001 7.53033618186277e-001 -2.2318e-005 7.55031147188696e-001 -2.0198e-003
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26728306950872e-001 1.7925e-004 4.26409162407343e-001 4.9839e-004
3.00 5.00 2.98193396308125e-001 2.97253416315856e-001 9.3998e-004 3.01259321187718e-001 -3.0659e-003
4.00 1.00 9.52770303245878e-001 9.54292929510070e-001 -1.5226e-003 9.54729537014618e-001 -1.9592e-003
4.00 2.00 8.51936356981248e-001 8.52332539751002e-001 -3.9618e-004 8.47323364392281e-001 4.6130e-003
4.00 3.00 7.16950482726697e-001 7.16962505542828e-001 -1.2023e-005 7.17454008587237e-001 -5.0353e-004
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 0.0000e+000 5.71715890928425e-001 0.0000e+000
4.00 5.00 4.35072015844931e-001 4.35019406163265e-001 5.2610e-005 4.35445537648950e-001 -3.7352e-004
5.00 1.00 9.76650054658845e-001 9.78089443478190e-001 -1.4394e-003 9.66346180387962e-001 1.0304e-002
5.00 2.00 9.13934477595961e-001 9.14348322670781e-001 -4.1385e-004 9.10870843158197e-001 3.0636e-003
5.00 3.00 8.14938772496419e-001 8.14619038158618e-001 3.1973e-004 8.18878432314698e-001 -3.9397e-003
5.00 4.00 6.92981835299699e-001 6.92992478392866e-001 -1.0643e-005 6.92529565690539e-001 4.5227e-004
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000

1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94413745865224e-001 -1.1689e-004 3.94894322303876e-001 -5.9746e-004
1.00 3.00 2.24984708801310e-001 2.22669210477421e-001 2.3155e-003 2.26711144930319e-001 -1.7264e-003
1.00 4.00 1.23381447904444e-001 1.24197104657575e-001 -8.1566e-004 1.24282815235069e-001 -9.0137e-004
1.00 5.00 6.56319493789875e-002 6.57191933427541e-002 -8.7244e-005 6.80993077477339e-002 -2.4674e-003
2.00 1.00 8.17415225126923e-001 8.17414742633396e-001 4.8249e-007 8.17114265564211e-001 3.0096e-004
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 0.0000e+000 6.03500960611993e-001 0.0000e+000
2.00 3.00 4.14710585222029e-001 4.14716356084739e-001 -5.7709e-006 4.13784857542772e-001 9.2573e-004
2.00 4.00 2.70039453942757e-001 2.69942684229319e-001 9.6770e-005 2.69451183341462e-001 5.8827e-004
2.00 5.00 1.68568913522749e-001 1.68793327945998e-001 -2.2441e-004 1.68166142040701e-001 4.0277e-004
3.00 1.00 9.06136886710340e-001 9.06085378574383e-001 5.1508e-005 9.06260210495275e-001 -1.2332e-004
3.00 2.00 7.53011300651773e-001 7.53014194116136e-001 -2.8935e-006 7.52365982382605e-001 6.4532e-004
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26813709927285e-001 9.3847e-005 4.27142266960049e-001 -2.3471e-004
3.00 5.00 2.98193396308125e-001 2.98345040185542e-001 -1.5164e-004 2.96844299653695e-001 1.3491e-003
4.00 1.00 9.52770303245878e-001 9.53146239774615e-001 -3.7594e-004 9.52658391696258e-001 1.1191e-004
4.00 2.00 8.51936356981248e-001 8.51906925135821e-001 2.9432e-005 8.49202036473870e-001 2.7343e-003
4.00 3.00 7.16950482726697e-001 7.16951804546839e-001 -1.3218e-006 7.16885326562727e-001 6.5156e-005
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 0.0000e+000 5.71715890928425e-001 0.0000e+000
4.00 5.00 4.35072015844931e-001 4.34983258330839e-001 8.8758e-005 4.34925131254121e-001 1.4688e-004
5.00 1.00 9.76650054658845e-001 9.76182480715274e-001 4.6757e-004 9.65865677054046e-001 1.0784e-002
5.00 2.00 9.13934477595961e-001 9.14791878942523e-001 -8.5740e-004 9.09254254401868e-001 4.6802e-003
5.00 3.00 8.14938772496419e-001 8.14910653148305e-001 2.8119e-005 8.14315445697836e-001 6.2333e-004
5.00 4.00 6.92981835299699e-001 6.92966654858981e-001 1.5180e-005 6.92938201363760e-001 4.3634e-005
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000
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Table D.5: Based upon the estimators Ξ̂4 and Ξ̂6, a selection of estimates of ρ(σ, τ). For
each (σ, τ) pair, an estimate is compared to one obtained by ASQ, with a tolerance of
10−8. Both ε1 and ε2 are the absolute error between the ASQ estimate and Ξ̂4 and Ξ̂6

respectively. The first half of the table sets N = 105, second sets N = 106.

σ τ ASQ Ξ̂4 ε1 Ξ̂6 ε2
1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94220483068006e-001 7.6376e-005 3.94142488451490e-001 1.5437e-004
1.00 3.00 2.24984708801310e-001 2.24716522906453e-001 2.6819e-004 2.24168819966970e-001 8.1589e-004
1.00 4.00 1.23381447904444e-001 1.22846311839826e-001 5.3514e-004 1.23513954228054e-001 -1.3251e-004
1.00 5.00 6.56319493789875e-002 6.70121471931229e-002 -1.3802e-003 6.39721344035294e-002 1.6598e-003
2.00 1.00 8.17415225126923e-001 8.17428194656259e-001 -1.2970e-005 8.17369828086118e-001 4.5397e-005
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 0.0000e+000 6.03500960611993e-001 0.0000e+000
2.00 3.00 4.14710585222029e-001 4.14710867477435e-001 -2.8226e-007 4.14828888409162e-001 -1.1830e-004
2.00 4.00 2.70039453942757e-001 2.69811654802219e-001 2.2780e-004 2.69621837766475e-001 4.1762e-004
2.00 5.00 1.68568913522749e-001 1.68497221983705e-001 7.1692e-005 1.68682419266487e-001 -1.1351e-004
3.00 1.00 9.06136886710340e-001 9.06267867579841e-001 -1.3098e-004 9.05542657196414e-001 5.9423e-004
3.00 2.00 7.53011300651773e-001 7.53013081872026e-001 -1.7812e-006 7.53236255746984e-001 -2.2496e-004
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26918851025958e-001 -1.1295e-005 4.27066464775575e-001 -1.5891e-004
3.00 5.00 2.98193396308125e-001 2.98216836562828e-001 -2.3440e-005 2.98205531834536e-001 -1.2136e-005
4.00 1.00 9.52770303245878e-001 9.52815081514866e-001 -4.4778e-005 9.53343249350871e-001 -5.7295e-004
4.00 2.00 8.51936356981248e-001 8.51914807236771e-001 2.1550e-005 8.51935044764002e-001 1.3122e-006
4.00 3.00 7.16950482726697e-001 7.16954517666886e-001 -4.0349e-006 7.16818858591617e-001 1.3162e-004
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 0.0000e+000 5.71715890928425e-001 0.0000e+000
4.00 5.00 4.35072015844931e-001 4.35062221409677e-001 9.7944e-006 4.35115418770059e-001 -4.3403e-005
5.00 1.00 9.76650054658845e-001 9.76510807403662e-001 1.3925e-004 9.77406353687313e-001 -7.5630e-004
5.00 2.00 9.13934477595961e-001 9.14045763627111e-001 -1.1129e-004 9.13137511047949e-001 7.9697e-004
5.00 3.00 8.14938772496419e-001 8.14931554017805e-001 7.2185e-006 8.15157612873681e-001 -2.1884e-004
5.00 4.00 6.92981835299699e-001 6.92981895074277e-001 -5.9775e-008 6.92729664621689e-001 2.5217e-004
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000

1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94284283560691e-001 1.2575e-005 3.94289821520363e-001 7.0374e-006
1.00 3.00 2.24984708801310e-001 2.25106756223286e-001 -1.2205e-004 2.25201568381690e-001 -2.1686e-004
1.00 4.00 1.23381447904444e-001 1.23462951106194e-001 -8.1503e-005 1.23848846361134e-001 -4.6740e-004
1.00 5.00 6.56319493789875e-002 6.52106118200613e-002 4.2134e-004 6.60886489994547e-002 -4.5670e-004
2.00 1.00 8.17415225126923e-001 8.17417224502408e-001 -1.9994e-006 8.17368934652986e-001 4.6290e-005
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 0.0000e+000 6.03500960611993e-001 0.0000e+000
2.00 3.00 4.14710585222029e-001 4.14708811205497e-001 1.7740e-006 4.14685887842424e-001 2.4697e-005
2.00 4.00 2.70039453942757e-001 2.70010880914697e-001 2.8573e-005 2.70033737948816e-001 5.7160e-006
2.00 5.00 1.68568913522749e-001 1.68504439915073e-001 6.4474e-005 1.68762980877612e-001 -1.9407e-004
3.00 1.00 9.06136886710340e-001 9.06138733595694e-001 -1.8469e-006 9.06206888176947e-001 -7.0001e-005
3.00 2.00 7.53011300651773e-001 7.53011750858404e-001 -4.5021e-007 7.52948428029182e-001 6.2873e-005
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26908169590950e-001 -6.1314e-007 4.26904211278509e-001 3.3452e-006
3.00 5.00 2.98193396308125e-001 2.98214992816497e-001 -2.1597e-005 2.98273515035349e-001 -8.0119e-005
4.00 1.00 9.52770303245878e-001 9.52771531277198e-001 -1.2280e-006 9.52748392634784e-001 2.1911e-005
4.00 2.00 8.51936356981248e-001 8.51917356942582e-001 1.9000e-005 8.52345858985399e-001 -4.0950e-004
4.00 3.00 7.16950482726697e-001 7.16951554059388e-001 -1.0713e-006 7.16958023384484e-001 -7.5407e-006
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 0.0000e+000 5.71715890928425e-001 0.0000e+000
4.00 5.00 4.35072015844931e-001 4.35073490478388e-001 -1.4746e-006 4.35075522776482e-001 -3.5069e-006
5.00 1.00 9.76650054658845e-001 9.76686506879731e-001 -3.6452e-005 9.76660803995853e-001 -1.0749e-005
5.00 2.00 9.13934477595961e-001 9.14013285590201e-001 -7.8808e-005 9.13516535189875e-001 4.1794e-004
5.00 3.00 8.14938772496419e-001 8.14935567195919e-001 3.2053e-006 8.15277495507355e-001 -3.3872e-004
5.00 4.00 6.92981835299699e-001 6.92982132104268e-001 -2.9680e-007 6.92958013262416e-001 2.3822e-005
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000
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Table D.6: Estimates of ρ(σ, τ), based upon the estimators Ξ̂5 and Ξ̂7. For each (σ, τ)
pair, an estimate is compared to one obtained by ASQ, with a tolerance of 10−8. Both ε1
and ε2 are the absolute error between the ASQ estimate and Ξ̂5 and Ξ̂7 respectively. The
first half of the table sets N = 103, second sets N = 104.

σ τ ASQ Ξ̂5 ε1 Ξ̂7 ε2
1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94337020160272e-001 -4.0161e-005 3.95388002687352e-001 -1.0911e-003
1.00 3.00 2.24984708801310e-001 2.23575790417899e-001 1.4089e-003 2.30176619760505e-001 -5.1919e-003
1.00 4.00 1.23381447904444e-001 1.19938395744302e-001 3.4431e-003 1.22861809003696e-001 5.1964e-004
1.00 5.00 6.56319493789875e-002 6.10954220170256e-002 4.5365e-003 5.48755106171625e-002 1.0756e-002
2.00 1.00 8.17415225126923e-001 8.17489223701762e-001 -7.3999e-005 8.17498683336198e-001 -8.3458e-005
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 -1.1102e-016 6.03500960611993e-001 -1.1102e-016
2.00 3.00 4.14710585222029e-001 4.14740813509182e-001 -3.0228e-005 4.15934076372467e-001 -1.2235e-003
2.00 4.00 2.70039453942757e-001 2.69559062846534e-001 4.8039e-004 2.63295829783099e-001 6.7436e-003
2.00 5.00 1.68568913522749e-001 1.69860857919563e-001 -1.2919e-003 1.68819645820599e-001 -2.5073e-004
3.00 1.00 9.06136886710340e-001 9.01904787060865e-001 4.2321e-003 9.08129853290677e-001 -1.9930e-003
3.00 2.00 7.53011300651773e-001 7.52285085783106e-001 7.2621e-004 7.52267693086255e-001 7.4361e-004
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26928778713931e-001 -2.1222e-005 4.26190593759042e-001 7.1696e-004
3.00 5.00 2.98193396308125e-001 2.98343281564006e-001 -1.4989e-004 3.01187332868557e-001 -2.9939e-003
4.00 1.00 9.52770303245878e-001 9.54695390161913e-001 -1.9251e-003 9.53726095138021e-001 -9.5579e-004
4.00 2.00 8.51936356981248e-001 8.51364177242597e-001 5.7218e-004 8.55724144726791e-001 -3.7878e-003
4.00 3.00 7.16950482726697e-001 7.16867988369372e-001 8.2494e-005 7.20623041903683e-001 -3.6726e-003
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 -1.1102e-016 5.71715890928425e-001 -1.1102e-016
4.00 5.00 4.35072015844931e-001 4.35084058735489e-001 -1.2043e-005 4.34085875608268e-001 9.8614e-004
5.00 1.00 9.76650054658845e-001 9.62599500259666e-001 1.4051e-002 9.72081476674733e-001 4.5686e-003
5.00 2.00 9.13934477595961e-001 9.09796433095005e-001 4.1380e-003 9.22999120866528e-001 -9.0646e-003
5.00 3.00 8.14938772496419e-001 8.15809512487437e-001 -8.7074e-004 8.22939825440480e-001 -8.0011e-003
5.00 4.00 6.92981835299699e-001 6.93022105037160e-001 -4.0270e-005 6.93273140069790e-001 -2.9130e-004
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000

1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94345228002909e-001 -4.8369e-005 3.93124862489673e-001 1.1720e-003
1.00 3.00 2.24984708801310e-001 2.25321566100041e-001 -3.3686e-004 2.23723283619554e-001 1.2614e-003
1.00 4.00 1.23381447904444e-001 1.23562762339163e-001 -1.8131e-004 1.32930198574313e-001 -9.5488e-003
1.00 5.00 6.56319493789875e-002 6.46436122153489e-002 9.8834e-004 7.31434113903418e-002 -7.5115e-003
2.00 1.00 8.17415225126923e-001 8.17169389301722e-001 2.4584e-004 8.17137884137984e-001 2.7734e-004
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 -1.1102e-016 6.03500960611993e-001 -1.1102e-016
2.00 3.00 4.14710585222029e-001 4.14700280601804e-001 1.0305e-005 4.14736182053095e-001 -2.5597e-005
2.00 4.00 2.70039453942757e-001 2.70135453609699e-001 -9.6000e-005 2.69782231562045e-001 2.5722e-004
2.00 5.00 1.68568913522749e-001 1.68163748884650e-001 4.0516e-004 1.77311558562444e-001 -8.7426e-003
3.00 1.00 9.06136886710340e-001 9.06296707904199e-001 -1.5982e-004 9.06457202559808e-001 -3.2032e-004
3.00 2.00 7.53011300651773e-001 7.52815329602791e-001 1.9597e-004 7.52935549034427e-001 7.5752e-005
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26909740740315e-001 -2.1843e-006 4.26875420797241e-001 3.2136e-005
3.00 5.00 2.98193396308125e-001 2.98196704618595e-001 -3.3083e-006 2.98583224615187e-001 -3.8983e-004
4.00 1.00 9.52770303245878e-001 9.55673772718039e-001 -2.9035e-003 9.55385852690463e-001 -2.6155e-003
4.00 2.00 8.51936356981248e-001 8.51363278432103e-001 5.7308e-004 8.52108883024849e-001 -1.7253e-004
4.00 3.00 7.16950482726697e-001 7.16940864017119e-001 9.6187e-006 7.17242292980479e-001 -2.9181e-004
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 -1.1102e-016 5.71715890928425e-001 -1.1102e-016
4.00 5.00 4.35072015844931e-001 4.35063444041519e-001 8.5718e-006 4.35644991278726e-001 -5.7298e-004
5.00 1.00 9.76650054658845e-001 9.75668099368548e-001 9.8196e-004 9.87237539040348e-001 -1.0587e-002
5.00 2.00 9.13934477595961e-001 9.13998461328591e-001 -6.3984e-005 9.12912349040459e-001 1.0221e-003
5.00 3.00 8.14938772496419e-001 8.14969107463293e-001 -3.0335e-005 8.13606180455040e-001 1.3326e-003
5.00 4.00 6.92981835299699e-001 6.93012499430915e-001 -3.0664e-005 6.93111295941492e-001 -1.2946e-004
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000
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Table D.7: A selection of estimates of ρ(σ, τ), based upon the estimators Ξ̂5 and Ξ̂7. For
each (σ, τ) pair, an estimate is compared to one obtained by ASQ, with a tolerance of
10−8. Both ε1 and ε2 are the absolute error between the ASQ estimate and Ξ̂5 and Ξ̂7

respectively. The first half of the table sets N = 105, second sets N = 106.

σ τ ASQ Ξ̂5 ε1 Ξ̂7 ε2
1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94284164720893e-001 1.2694e-005 3.94281844400587e-001 1.5014e-005
1.00 3.00 2.24984708801310e-001 2.24908140763895e-001 7.6568e-005 2.24699192164545e-001 2.8552e-004
1.00 4.00 1.23381447904444e-001 1.23352781470946e-001 2.8666e-005 1.21023449364528e-001 2.3580e-003
1.00 5.00 6.56319493789875e-002 6.50613371093183e-002 5.7061e-004 6.15935083116151e-002 4.0384e-003
2.00 1.00 8.17415225126923e-001 8.17545275584011e-001 -1.3005e-004 8.17813260180413e-001 -3.9804e-004
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 -1.1102e-016 6.03500960611993e-001 -1.1102e-016
2.00 3.00 4.14710585222029e-001 4.14711620346561e-001 -1.0351e-006 4.14464332640283e-001 2.4625e-004
2.00 4.00 2.70039453942757e-001 2.70012728124271e-001 2.6726e-005 2.69848525144718e-001 1.9093e-004
2.00 5.00 1.68568913522749e-001 1.68813807613917e-001 -2.4489e-004 1.68419704034919e-001 1.4921e-004
3.00 1.00 9.06136886710340e-001 9.06587525200322e-001 -4.5064e-004 9.05588464872565e-001 5.4842e-004
3.00 2.00 7.53011300651773e-001 7.53008395831830e-001 2.9048e-006 7.52945102768093e-001 6.6198e-005
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26908912710693e-001 -1.3563e-006 4.26878171154608e-001 2.9385e-005
3.00 5.00 2.98193396308125e-001 2.98173536434324e-001 1.9860e-005 2.98843492677548e-001 -6.5010e-004
4.00 1.00 9.52770303245878e-001 9.53060960489581e-001 -2.9066e-004 9.53296220751630e-001 -5.2592e-004
4.00 2.00 8.51936356981248e-001 8.52097010525492e-001 -1.6065e-004 8.51712638597254e-001 2.2372e-004
4.00 3.00 7.16950482726697e-001 7.16971463894443e-001 -2.0981e-005 7.17269308580283e-001 -3.1883e-004
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 -1.1102e-016 5.71715890928425e-001 -1.1102e-016
4.00 5.00 4.35072015844931e-001 4.35071937510675e-001 7.8334e-008 4.35075301709926e-001 -3.2859e-006
5.00 1.00 9.76650054658845e-001 9.75041885494213e-001 1.6082e-003 9.77518093870024e-001 -8.6804e-004
5.00 2.00 9.13934477595961e-001 9.14154412522131e-001 -2.1993e-004 9.14653733043966e-001 -7.1926e-004
5.00 3.00 8.14938772496419e-001 8.14979716879165e-001 -4.0944e-005 8.14696414119326e-001 2.4236e-004
5.00 4.00 6.92981835299699e-001 6.92986133787990e-001 -4.2985e-006 6.92988586091299e-001 -6.7508e-006
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000

1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94295900532927e-001 9.5837e-007 3.94263602876621e-001 3.3256e-005
1.00 3.00 2.24984708801310e-001 2.24955098437109e-001 2.9610e-005 2.25025141517534e-001 -4.0433e-005
1.00 4.00 1.23381447904444e-001 1.23483463203552e-001 -1.0202e-004 1.23452295130581e-001 -7.0847e-005
1.00 5.00 6.56319493789875e-002 6.55395465216552e-002 9.2403e-005 6.55852215586087e-002 4.6728e-005
2.00 1.00 8.17415225126923e-001 8.17420597856408e-001 -5.3727e-006 8.17387653324767e-001 2.7572e-005
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 -1.1102e-016 6.03500960611993e-001 -1.1102e-016
2.00 3.00 4.14710585222029e-001 4.14711569592460e-001 -9.8437e-007 4.14670516249809e-001 4.0069e-005
2.00 4.00 2.70039453942757e-001 2.70049465936515e-001 -1.0012e-005 2.70358553038496e-001 -3.1910e-004
2.00 5.00 1.68568913522749e-001 1.68625906091264e-001 -5.6993e-005 1.69106112680680e-001 -5.3720e-004
3.00 1.00 9.06136886710340e-001 9.06023453255840e-001 1.1343e-004 9.06298843393719e-001 -1.6196e-004
3.00 2.00 7.53011300651773e-001 7.53018907408069e-001 -7.6068e-006 7.53007379700900e-001 3.9210e-006
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26908022888785e-001 -4.6644e-007 4.26880294621044e-001 2.7262e-005
3.00 5.00 2.98193396308125e-001 2.98187405379171e-001 5.9909e-006 2.98244736065811e-001 -5.1340e-005
4.00 1.00 9.52770303245878e-001 9.53023383446578e-001 -2.5308e-004 9.53195095899797e-001 -4.2479e-004
4.00 2.00 8.51936356981248e-001 8.51904739045078e-001 3.1618e-005 8.51756598434958e-001 1.7976e-004
4.00 3.00 7.16950482726697e-001 7.16950460863216e-001 2.1863e-008 7.16956805796781e-001 -6.3231e-006
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 -1.1102e-016 5.71715890928425e-001 -1.1102e-016
4.00 5.00 4.35072015844931e-001 4.35072248098194e-001 -2.3225e-007 4.35032701775758e-001 3.9314e-005
5.00 1.00 9.76650054658845e-001 9.76322360488141e-001 3.2769e-004 9.76595893987970e-001 5.4161e-005
5.00 2.00 9.13934477595961e-001 9.14025655292749e-001 -9.1178e-005 9.14137388458337e-001 -2.0291e-004
5.00 3.00 8.14938772496419e-001 8.14927801855803e-001 1.0971e-005 8.14975773039055e-001 -3.7001e-005
5.00 4.00 6.92981835299699e-001 6.92980018791908e-001 1.8165e-006 6.92976000416266e-001 5.8349e-006
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000
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Table D.8: The first half of the table is based upon the Uniform estimators of Theorem 1
Part (iii), Ξ̂4 and Theorem 1 Part (iv), Ξ̂5. The second half of the table is based upon the
exponential estimators of Theorem 1 Part (iii), Ξ̂6 and Theorem 1 Part (iv), Ξ̂7, giving a
selection of estimates of ρ(σ, τ), N = 106. For each (σ, τ) pair, an estimate is compared
to one obtained by ASQ, with a tolerance of 10−8.

σ τ ASQ Ξ̂4 ε1 Ξ̂5 ε2
1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94307315651829e-001 -1.0457e-005 3.94297970230268e-001 -1.1113e-006
1.00 3.00 2.24984708801310e-001 2.24866226216644e-001 1.1848e-004 2.25009057360205e-001 -2.4349e-005
1.00 4.00 1.23381447904444e-001 1.23453201191199e-001 -7.1753e-005 1.23356589294396e-001 2.4859e-005
1.00 5.00 6.56319493789875e-002 6.55507947563719e-002 8.1155e-005 6.56130051310764e-002 1.8944e-005
2.00 1.00 8.17415225126923e-001 8.17415581500774e-001 -3.5637e-007 8.17357071863731e-001 5.8153e-005
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 0.0000e+000 6.03500960611993e-001 -1.1102e-016
2.00 3.00 4.14710585222029e-001 4.14722245366149e-001 -1.1660e-005 4.14708135723465e-001 2.4495e-006
2.00 4.00 2.70039453942757e-001 2.70046023461417e-001 -6.5695e-006 2.70026773998732e-001 1.2680e-005
2.00 5.00 1.68568913522749e-001 1.68397961576931e-001 1.7095e-004 1.68570649199877e-001 -1.7357e-006
3.00 1.00 9.06136886710340e-001 9.06113730157681e-001 2.3157e-005 9.06119546174549e-001 1.7341e-005
3.00 2.00 7.53011300651773e-001 7.53011556567329e-001 -2.5592e-007 7.53016352330771e-001 -5.0517e-006
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26897091677684e-001 1.0465e-005 4.26908828342268e-001 -1.2719e-006
3.00 5.00 2.98193396308125e-001 2.98226020809542e-001 -3.2625e-005 2.98187454122406e-001 5.9422e-006
4.00 1.00 9.52770303245878e-001 9.52718255950275e-001 5.2047e-005 9.52710617939466e-001 5.9685e-005
4.00 2.00 8.51936356981248e-001 8.51916535861328e-001 1.9821e-005 8.51915813001954e-001 2.0544e-005
4.00 3.00 7.16950482726697e-001 7.16952035552288e-001 -1.5528e-006 7.16950131322788e-001 3.5140e-007
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 0.0000e+000 5.71715890928425e-001 -1.1102e-016
4.00 5.00 4.35072015844931e-001 4.35071476520327e-001 5.3932e-007 4.35071086007455e-001 9.2984e-007
5.00 1.00 9.76650054658845e-001 9.76578388776317e-001 7.1666e-005 9.76614088274783e-001 3.5966e-005
5.00 2.00 9.13934477595961e-001 9.13959287867896e-001 -2.4810e-005 9.13833651392929e-001 1.0083e-004
5.00 3.00 8.14938772496419e-001 8.14934020801279e-001 4.7517e-006 8.14968562488102e-001 -2.9790e-005
5.00 4.00 6.92981835299699e-001 6.92981382024522e-001 4.5328e-007 6.92985541326024e-001 -3.7060e-006
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000

σ τ ASQ Ξ̂6 ε3 Ξ̂7 ε4
1.00 1.00 6.54254161276836e-001 6.54254161276836e-001 0.0000e+000 6.54254161276836e-001 0.0000e+000
1.00 2.00 3.94296858899549e-001 3.94293172340004e-001 3.6866e-006 3.94290150537489e-001 6.7084e-006
1.00 3.00 2.24984708801310e-001 2.24985701862081e-001 -9.9306e-007 2.24960781602674e-001 2.3927e-005
1.00 4.00 1.23381447904444e-001 1.23735622359681e-001 -3.5417e-004 1.23121204232793e-001 2.6024e-004
1.00 5.00 6.56319493789875e-002 6.56295431629140e-002 2.4062e-006 6.62014160940180e-002 -5.6947e-004
2.00 1.00 8.17415225126923e-001 8.17291464590203e-001 1.2376e-004 8.17456637111941e-001 -4.1412e-005
2.00 2.00 6.03500960611993e-001 6.03500960611993e-001 0.0000e+000 6.03500960611993e-001 -1.1102e-016
2.00 3.00 4.14710585222029e-001 4.14696298790895e-001 1.4286e-005 4.14658657938413e-001 5.1927e-005
2.00 4.00 2.70039453942757e-001 2.70330844666473e-001 -2.9139e-004 2.70094136439180e-001 -5.4682e-005
2.00 5.00 1.68568913522749e-001 1.68618181586572e-001 -4.9268e-005 1.68621722495285e-001 -5.2809e-005
3.00 1.00 9.06136886710340e-001 9.06306590322955e-001 -1.6970e-004 9.05945882452053e-001 1.9100e-004
3.00 2.00 7.53011300651773e-001 7.52974110707278e-001 3.7190e-005 7.52974806352080e-001 3.6494e-005
3.00 3.00 5.83328716319908e-001 5.83328716319908e-001 0.0000e+000 5.83328716319908e-001 0.0000e+000
3.00 4.00 4.26907556449231e-001 4.26907146953775e-001 4.0950e-007 4.26942387727101e-001 -3.4831e-005
3.00 5.00 2.98193396308125e-001 2.98159249548400e-001 3.4147e-005 2.98131931054534e-001 6.1465e-005
4.00 1.00 9.52770303245878e-001 9.52817097645603e-001 -4.6794e-005 9.52900687884700e-001 -1.3038e-004
4.00 2.00 8.51936356981248e-001 8.51859884522794e-001 7.6472e-005 8.51767118116811e-001 1.6924e-004
4.00 3.00 7.16950482726697e-001 7.16997642114752e-001 -4.7159e-005 7.16959665066951e-001 -9.1823e-006
4.00 4.00 5.71715890928425e-001 5.71715890928425e-001 0.0000e+000 5.71715890928425e-001 -1.1102e-016
4.00 5.00 4.35072015844931e-001 4.35032529750453e-001 3.9486e-005 4.35090931019471e-001 -1.8915e-005
5.00 1.00 9.76650054658845e-001 9.76734872444844e-001 -8.4818e-005 9.76133843741234e-001 5.1621e-004
5.00 2.00 9.13934477595961e-001 9.13868262110131e-001 6.6215e-005 9.13908669263083e-001 2.5808e-005
5.00 3.00 8.14938772496419e-001 8.14870703703569e-001 6.8069e-005 8.14982387717804e-001 -4.3615e-005
5.00 4.00 6.92981835299699e-001 6.92975020678868e-001 6.8146e-006 6.93007914036494e-001 -2.6079e-005
5.00 5.00 5.63916668581714e-001 5.63916668581714e-001 0.0000e+000 5.63916668581714e-001 0.0000e+000

44



DISTRIBUTION LIST

Numerical Estimation of Marcum’s Q-Function using Monte Carlo Approximation
Schemes

Graham V. Weinberg and Louise Panton

AUSTRALIA

No. of copies

DEFENCE ORGANISATION

Task Sponsor

Commander, Surveillance & Response Group, RAAF Williamtown 1 Printed

S&T Program

Chief Defence Scientist 1

Deputy Chief Defence Scientist (Policy) 1

AS Science Corporate Management 1

Director General Science Policy Development 1

Counsellor, Defence Science, London Doc Data Sheet

Counsellor, Defence Science, Washington Doc Data Sheet

Scientific Adviser to MRDC, Thailand Doc Data Sheet

Scientific Adviser Joint 1

Navy Scientific Adviser 1

Scientific Adviser, Army Doc Data Sheet

Air Force Scientific Adviser Doc Data Sheet

Scientific Adviser to the DMO Doc Data Sheet

Systems Sciences Laboratory

EWSTIS 1

Chief, Electronic Warfare and Radar Division, Dr Len Sciacca Doc Data Sheet
& Dist List

Research Leader, Microwave Radar, Dr Andrew Shaw 1

Head, Radar Modelling and Analysis Group, Dr Brett Hay-
wood

1 Printed

Task Manager, Dr Ian Chant, EWRD 1 Printed

Author, Graham V Weinberg, EWRD 20 Printed

Dr Graeme Nash, WSD 1 Printed

Dr Paul Berry, EWRD 1 Printed

Mr David Dempsey, EWRD 1 Printed

Mr Nick Lioutas, EWRD 1 Printed

Mr Daniel Finch, EWRD 1 Printed

Dr Aris Alexopoulos, EWRD 1 Printed



Mr Ross Kyprianou, EWRD 1 Printed

DSTO Library and Archives

Library, Edinburgh 2 Printed

Defence Archives 1 Printed

Capability Development Group

Director General Capability and Plans Doc Data Sheet

Assistant Secretary Investment Analysis Doc Data Sheet

Director Capability Plans and Programming Doc Data Sheet

Chief Information Officer Group

Director General Australian Defence Simulation Office Doc Data Sheet

AS Information Strategies and Futures Doc Data Sheet

Director General Information Services Doc Data Sheet

Strategy Group

Director General Military Strategy Doc Data Sheet

Assistant Secretary Strategic Policy Doc Data Sheet

Assistant Secretary Governance and Counter-Proliferation Doc Data Sheet

Navy

Maritime Operational Analysis Centre, Building 89/90 Gar-
den Island Sydney NSW Deputy Director (Operations) and
Deputy Director (Analysis)

Doc Data Sheet
& Dist List

Director General Navy Capability, Performance and Plans,
Navy Headquarters

Doc Data Sheet

Director General Navy Strategic Policy and Futures, Navy
Headquarters

Doc Data Sheet

Air Force

SO (Science), Headquarters Air Combat Group, RAAF Base,
Williamtown NSW 2314

Doc Data Sheet
& Exec Summ

Army

ABCA National Standardisation Officer, Land Warfare Devel-
opment Sector, Puckapunyal

Doc Data Sheet
e-mailed

SO (Science), Land Headquarters (LHQ), Victoria Barracks,
NSW

Doc Data Sheet
& Exec Summ

SO (Science), Deployable Joint Force Headquarters (DJFHQ)(L),
Enoggera QLD

Doc Data Sheet

Joint Operations Command

Director General Joint Operations Doc Data Sheet

Chief of Staff Headquarters Joint Operations Command Doc Data Sheet

Commandant ADF Warfare Centre Doc Data Sheet



Director General Strategic Logistics Doc Data Sheet

COS, Australian Defence College Doc Data Sheet

Intelligence and Security Group

AS, Concepts, Capability and Resources 1

DGSTA, Defence Intelligence Organisation 1 Printed

Director, Advanced Capabilities Doc Data Sheet

Manager, Information Centre, Defence Intelligence Organisa-
tion

1

Director, Advanced Capabilities Doc Data Sheet

Defence Materiel Organisation

Deputy CEO Doc Data Sheet

Head Aerospace Systems Division Doc Data Sheet

Head Maritime Systems Division Doc Data Sheet

Program Manager Air Warfare Destroyer Doc Data Sheet

CDR Joint Logistics Command Doc Data Sheet

Guided Weapon & Explosive Ordnance Branch (GWEO) Doc Data Sheet

OTHER ORGANISATIONS

National Library of Australia 1

NASA (Canberra) 1

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy

Library 1

Head of Aerospace and Mechanical Engineering 1

Hargrave Library, Monash University Doc Data Sheet



OUTSIDE AUSTRALIA

INTERNATIONAL DEFENCE INFORMATION CENTRES

US Defense Technical Information Center 1

UK Dstl Knowledge Services 1

Canada Defence Research Directorate R&D Knowledge & In-
formation Management (DRDKIM)

1

NZ Defence Information Centre 1

ABSTRACTING AND INFORMATION ORGANISATIONS

Library, Chemical Abstracts Reference Service 1

Engineering Societies Library, US 1

Materials Information, Cambridge Scientific Abstracts, US 1

Documents Librarian, The Center for Research Libraries, US 1

INFORMATION EXCHANGE AGREEMENT PARTNERS

National Aerospace Laboratory, Japan 1

National Aerospace Laboratory, Netherlands 1

SPARES

DSTO Edinburgh Library 5 Printed

Total number of copies: 63 Printed 39
PDF 24



Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Numerical Estimation of Marcum’s Q-Function
using Monte Carlo Approximation Schemes

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Graham V. Weinberg and Louise Panton

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia, Australia 5111

6a. DSTO NUMBER

DSTO–RR–0311
6b. AR NUMBER

AR-013-613
6c. TYPE OF REPORT

Research Report
7. DOCUMENT DATE

April, 2006
8. FILE NUMBER

2006/1009746/1
9. TASK NUMBER

AIR 04/206
10. SPONSOR

CDR SRG
11. No OF PAGES

44
12. No OF REFS

27
13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/corporate/
reports/DSTO–RR–0311.pdf

14. RELEASE AUTHORITY

Chief, Electronic Warfare and Radar Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved For Public Release
OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations
17. CITATION IN OTHER DOCUMENTS

No Limitations
18. DEFTEST DESCRIPTORS

Radar detection; Detection probability; Stochastic
processes; Monte Carlo method
19. ABSTRACT

The Marcum Q-Function is an important tool in the study of radar detection probabilities in Gaussian
clutter and noise. Due to the fact that it is an intractable integral, much research has focused on finding
good numerical approximations for it. Such approximations include numerical integration techniques,
such as adaptive Simpson quadrature, and Taylor series approximations, induced by the modified Bessel
function of order zero, which appears in the integrand. One technique which has not been explored
in the literature is the sampling-based Monte Carlo approach. Part of the reason for this is that the
integral representation of the Marcum Q-Function is not in the most suitable form for Monte Carlo
methods. Using some recently derived techniques, we construct a number of sampling-based estimators
of this function, and we consider their relative merits.

Page classification: UNCLASSIFIED


	ABSTRACT
	EXECUTIVE SUMMARY
	Glossary
	The Marcum Q-Function
	The Standard Marcum Q-Function
	Estimating the Marcum Q-Function
	Monte Carlo Methods
	Contributions of this Report

	Representations of the Marcum Q-Function
	A General Result: Theorem 1

	Monte Carlo Estimators of the MarcumQ-Function
	Discrete Estimators
	Continuous Estimators

	Performance and Analysis of Estimators
	Simulation Gains
	Numerical Results
	Conclusions
	Acknowledgements
	References
	Appendix A: Some Properties of Statistical Variance
	Appendix B: Generation of Realisations ofRandom Variables
	Appendix C: Simulation Gains
	Appendix D: Tables of Numerical Results
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA
	ABSTRACT
	EXECUTIVE SUMMARY
	Glossary
	The Marcum Q-Function
	The Standard Marcum Q-Function
	Estimating the Marcum Q-Function
	Monte Carlo Methods
	Contributions of this Report

	Representations of the Marcum Q-Function
	A General Result: Theorem 1

	Monte Carlo Estimators of the MarcumQ-Function
	Discrete Estimators
	Continuous Estimators

	Performance and Analysis of Estimators
	Simulation Gains
	Numerical Results
	Conclusions
	Acknowledgements
	References
	Appendix A: Some Properties of Statistical Variance
	Appendix B: Generation of Realisations ofRandom Variables
	Appendix C: Simulation Gains
	Appendix D: Tables of Numerical Results
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA



